BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("RK-1235/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Item 8. Financial Statements and Supplementary Data. The Consolidated Financial Statements, together with the Notes thereto and the report thereon dated February 16, 2024, of PricewaterhouseCoopers LLP, the Firm’s independent registered public accounting firm (PCAOB ID 238).',
    'What type of data does Item 8 in a financial document contain?',
    "How did the assumptions and estimates used for assessing the fair value of reporting units potentially impact the company's financial statements?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6771
cosine_accuracy@3 0.8086
cosine_accuracy@5 0.8457
cosine_accuracy@10 0.8971
cosine_precision@1 0.6771
cosine_precision@3 0.2695
cosine_precision@5 0.1691
cosine_precision@10 0.0897
cosine_recall@1 0.6771
cosine_recall@3 0.8086
cosine_recall@5 0.8457
cosine_recall@10 0.8971
cosine_ndcg@10 0.7866
cosine_mrr@10 0.7514
cosine_map@100 0.7558

Information Retrieval

Metric Value
cosine_accuracy@1 0.6757
cosine_accuracy@3 0.8029
cosine_accuracy@5 0.8429
cosine_accuracy@10 0.8986
cosine_precision@1 0.6757
cosine_precision@3 0.2676
cosine_precision@5 0.1686
cosine_precision@10 0.0899
cosine_recall@1 0.6757
cosine_recall@3 0.8029
cosine_recall@5 0.8429
cosine_recall@10 0.8986
cosine_ndcg@10 0.7864
cosine_mrr@10 0.7507
cosine_map@100 0.7549

Information Retrieval

Metric Value
cosine_accuracy@1 0.66
cosine_accuracy@3 0.8014
cosine_accuracy@5 0.8357
cosine_accuracy@10 0.8857
cosine_precision@1 0.66
cosine_precision@3 0.2671
cosine_precision@5 0.1671
cosine_precision@10 0.0886
cosine_recall@1 0.66
cosine_recall@3 0.8014
cosine_recall@5 0.8357
cosine_recall@10 0.8857
cosine_ndcg@10 0.7743
cosine_mrr@10 0.7386
cosine_map@100 0.7434

Information Retrieval

Metric Value
cosine_accuracy@1 0.6429
cosine_accuracy@3 0.78
cosine_accuracy@5 0.8186
cosine_accuracy@10 0.8743
cosine_precision@1 0.6429
cosine_precision@3 0.26
cosine_precision@5 0.1637
cosine_precision@10 0.0874
cosine_recall@1 0.6429
cosine_recall@3 0.78
cosine_recall@5 0.8186
cosine_recall@10 0.8743
cosine_ndcg@10 0.7587
cosine_mrr@10 0.7219
cosine_map@100 0.7268

Information Retrieval

Metric Value
cosine_accuracy@1 0.6071
cosine_accuracy@3 0.7229
cosine_accuracy@5 0.77
cosine_accuracy@10 0.83
cosine_precision@1 0.6071
cosine_precision@3 0.241
cosine_precision@5 0.154
cosine_precision@10 0.083
cosine_recall@1 0.6071
cosine_recall@3 0.7229
cosine_recall@5 0.77
cosine_recall@10 0.83
cosine_ndcg@10 0.7157
cosine_mrr@10 0.6795
cosine_map@100 0.6852

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 46.06 tokens
    • max: 371 tokens
    • min: 8 tokens
    • mean: 20.8 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    As of December 31, 2023, a 5 percent change in the contingent consideration liabilities would result in a change in income before income taxes of $5.2 million. How would a 5% change in the contingent consideration liabilities impact income before taxes as of December 31, 2023?
    NIKE, Inc.'s principal business activity involves the design, development, and worldwide marketing and selling of athletic footwear, apparel, equipment, accessories, and services. What is the principal business activity of NIKE, Inc.?
    During 2023, changes in foreign currencies relative to the U.S. dollar negatively impacted net sales by approximately $3,484, 156 basis points, compared to 2022, attributable to our Canadian and Other International operations. What was the overall impact of foreign currencies on net sales in 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.8122 10 71.7934 - - - - -
1.0 13 - 0.7866 0.7864 0.7743 0.7587 0.7157
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RK-1235/bge-base-financial-matryoshka

Base model

BAAI/bge-base-en
Finetuned
(30)
this model

Evaluation results