MVP: Multi-task Supervised Pre-training for Natural Language Generation
Paper
•
2206.12131
•
Published
•
1
The MTL-summarization model was proposed in MVP: Multi-task Supervised Pre-training for Natural Language Generation by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
The detailed information and instructions can be found https://github.com/RUCAIBox/MVP.
MTL-summarization is supervised pre-trained using a mixture of labeled summarization datasets. It is a variant (Single) of our main MVP model. It follows a standard Transformer encoder-decoder architecture.
MTL-summarization is specially designed for summarization tasks, such as new summarization (CNN/DailyMail, XSum) and dialog summarization (SAMSum).
>>> from transformers import MvpTokenizer, MvpForConditionalGeneration
>>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-summarization")
>>> inputs = tokenizer(
... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.",
... return_tensors="pt",
... )
>>> generated_ids = model.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
["Don't do it if these are your reasons"]
MVP: https://huggingface.co/RUCAIBox/mvp.
Prompt-based models:
Multi-task models:
@article{tang2022mvp,
title={MVP: Multi-task Supervised Pre-training for Natural Language Generation},
author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong},
journal={arXiv preprint arXiv:2206.12131},
year={2022},
url={https://arxiv.org/abs/2206.12131},
}