Huggingface RWKV Finch 7B World 3 Model

HF compatible model for Finch-7B World 3.

Finch Bird

! Important Note !

The following is the HF transformers implementation of the Finch 7B World 3 model. This is meant to be used with the huggingface transformers

Quickstart with the hugging face transformer library

model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-7B-World3-HF", trust_remote_code=True).to(torch.float32)
tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-7B-World3-HF", trust_remote_code=True)

Evaluation

The following demonstrates the improvements from Eagle 7B to Finch 14B

Eagle 7B Finch 7B Finch 14B
ARC 39.59% 41.47% 46.33%
HellaSwag 53.09% 55.96% 57.69%
MMLU 30.86% 41.70% 56.05%
Truthful QA 33.03% 34.82% 39.27%
Winogrande 67.56% 71.19% 74.43%

Running on CPU via HF transformers

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}

Input: {input}

Response:"""
    else:
        return f"""User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: {instruction}

Assistant:"""


model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-7B-World3-HF", trust_remote_code=True).to(torch.float32)
tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-7B-World3-HF", trust_remote_code=True)

text = "请介绍北京的旅游景点"
prompt = generate_prompt(text)

inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))

output:

User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: 请介绍北京的旅游景点

Assistant: 北京是中国的首都,拥有众多的旅游景点,以下是其中一些著名的景点:
1. 故宫:位于北京市中心,是明清两代的皇宫,内有大量的文物和艺术品。
2. 天安门广场:是中国最著名的广场之一,是中国人民政治协商会议的旧址,也是中国人民政治协商会议的中心。
3. 颐和园:是中国古代皇家园林之一,有着悠久的历史和丰富的文化内涵。
4. 长城:是中国古代的一道长城,全长约万里,是中国最著名的旅游景点之一。
5. 北京大学:是中国著名的高等教育机构之一,有着悠久的历史和丰富的文化内涵。
6. 北京动物园:是中国最大的动物园之一,有着丰富的动物资源和丰富的文化内涵。
7. 故宫博物院:是中国最著名的博物馆之一,收藏了大量的文物和艺术品,是中国最重要的文化遗产之一。
8. 天坛:是中国古代皇家

Running on GPU via HF transformers

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}

Input: {input}

Response:"""
    else:
        return f"""User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: {instruction}

Assistant:"""


model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-7B-World3-HF", trust_remote_code=True, torch_dtype=torch.float16).to(0)
tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-7B-World3-HF", trust_remote_code=True)

text = "介绍一下大熊猫"
prompt = generate_prompt(text)

inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))

output:

User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: 介绍一下大熊猫

Assistant: 大熊猫是一种中国特有的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和白色的耳朵。大熊猫的食物主要是竹子,它们会在竹林中寻找竹子,并且会将竹子放在竹笼中进行储存。大熊猫的寿命约为20至30年,但由于栖息地的丧失和人类活动的

Batch Inference

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n', '\n').replace('\n\n', '\n')
    input = input.strip().replace('\r\n', '\n').replace('\n\n', '\n')
    if input:
        return f"""Instruction: {instruction}

Input: {input}

Response:"""
    else:
        return f"""User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: {instruction}

Assistant:"""

model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-7B-2411-World3-HF", trust_remote_code=True).to(torch.float32)
tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-7B-2411-World3-HF", trust_remote_code=True)

texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
prompts = [generate_prompt(text) for text in texts]

inputs = tokenizer(prompts, return_tensors="pt", padding=True)
outputs = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )

for output in outputs:
    print(tokenizer.decode(output.tolist(), skip_special_tokens=True))

output:

User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: 请介绍北京的旅游景点

Assistant: 北京是中国的首都,拥有丰富的旅游资源和历史文化遗产。以下是一些北京的旅游景点:
1. 故宫:位于北京市中心,是明清两代的皇宫,是中国最大的古代宫殿建筑群之一。
2. 天安门广场:位于北京市中心,是中国最著名的城市广场之一,也是中国最大的城市广场。
3. 颐和
User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: 介绍一下大熊猫

Assistant: 大熊猫是一种生活在中国中部地区的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和圆圆的眼睛。大熊猫是一种濒危物种,目前只有在野外的几个保护区才能看到它们的身影。大熊猫的食物主要是竹子,它们会在竹子上寻找食物,并且可以通
User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: 乌兰察布

Assistant: 乌兰察布是中国新疆维吾尔自治区的一个县级市,位于新疆维吾尔自治区中部,是新疆的第二大城市。乌兰察布市是新疆的第一大城市,也是新疆的重要城市之一。乌兰察布市是新疆的经济中心,也是新疆的重要交通枢纽之一。乌兰察布市的人口约为2.5万人,其中汉族占绝大多数。乌

Links

Acknowledgement

We are grateful for the help and support from the following key groups:

  • Recursal.ai team for financing the GPU resources, and managing the training of this foundation model - you can run the Finch line of RWKV models on their cloud / on-premise platform today.
  • EleutherAI for their support, especially in the v5/v6 Eagle/Finch paper
  • Linux Foundation AI & Data group for supporting and hosting the RWKV project
Downloads last month
17
Inference API
Unable to determine this model's library. Check the docs .