BMU_Finetuned_BART-large_MedQuad
This model is a fine-tuned version of facebook/bart-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5144
- Rouge1: 36.45
- Rouge2: 19.67
- Rougel: 27.7
- Rougelsum: 34.52
- Meteor: 24.99
- Bertscore Precision: 82.36
- Bertscore Recall: 79.28
- Bertscore F1: 80.68
- Gen Len: 152.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor | Bertscore Precision | Bertscore Recall | Bertscore F1 | Gen Len |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.8211 | 1.0 | 411 | 1.6256 | 36.19 | 19.87 | 27.87 | 34.38 | 24.65 | 82.13 | 78.97 | 80.41 | 150.43 |
1.7138 | 2.0 | 822 | 1.5407 | 36.2 | 20.04 | 28.09 | 34.33 | 24.4 | 82.8 | 78.98 | 80.74 | 132.61 |
1.6039 | 2.9945 | 1230 | 1.5144 | 36.45 | 19.67 | 27.7 | 34.52 | 24.99 | 82.36 | 79.28 | 80.68 | 152.88 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Radhikaaaa/BMU_Finetuned_BART-large_MedQuad
Base model
facebook/bart-large