BMU_Finetuned_BIO-BART_MedQuad
This model is a fine-tuned version of GanjinZero/biobart-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5404
- Rouge1: 36.82
- Rouge2: 20.39
- Rougel: 28.62
- Rougelsum: 34.96
- Meteor: 25.05
- Bertscore Precision: 87.36
- Bertscore Recall: 84.71
- Bertscore F1: 85.96
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor | Bertscore Precision | Bertscore Recall | Bertscore F1 |
---|---|---|---|---|---|---|---|---|---|---|---|
1.8272 | 1.0 | 411 | 1.7085 | 36.22 | 20.21 | 28.27 | 34.39 | 24.53 | 87.51 | 84.49 | 85.92 |
1.7387 | 2.0 | 822 | 1.6161 | 35.25 | 19.72 | 27.77 | 33.47 | 23.51 | 87.65 | 84.37 | 85.92 |
1.6207 | 3.0 | 1233 | 1.5703 | 36.3 | 20.59 | 28.7 | 34.58 | 24.61 | 87.57 | 84.55 | 85.98 |
1.5583 | 4.0 | 1644 | 1.5459 | 36.69 | 20.47 | 28.63 | 34.79 | 24.95 | 87.34 | 84.68 | 85.93 |
1.5529 | 4.9896 | 2050 | 1.5404 | 36.82 | 20.39 | 28.62 | 34.96 | 25.05 | 87.36 | 84.71 | 85.96 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Radhikaaaa/BMU_Finetuned_BIO-BART_MedQuad
Base model
GanjinZero/biobart-base