BMU_Finetuned_BIO-BART_MedQuad

This model is a fine-tuned version of GanjinZero/biobart-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5404
  • Rouge1: 36.82
  • Rouge2: 20.39
  • Rougel: 28.62
  • Rougelsum: 34.96
  • Meteor: 25.05
  • Bertscore Precision: 87.36
  • Bertscore Recall: 84.71
  • Bertscore F1: 85.96

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Meteor Bertscore Precision Bertscore Recall Bertscore F1
1.8272 1.0 411 1.7085 36.22 20.21 28.27 34.39 24.53 87.51 84.49 85.92
1.7387 2.0 822 1.6161 35.25 19.72 27.77 33.47 23.51 87.65 84.37 85.92
1.6207 3.0 1233 1.5703 36.3 20.59 28.7 34.58 24.61 87.57 84.55 85.98
1.5583 4.0 1644 1.5459 36.69 20.47 28.63 34.79 24.95 87.34 84.68 85.93
1.5529 4.9896 2050 1.5404 36.82 20.39 28.62 34.96 25.05 87.36 84.71 85.96

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
139M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Radhikaaaa/BMU_Finetuned_BIO-BART_MedQuad

Finetuned
(13)
this model