Reddit_BERTopic_MentalBERT

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("Rain4301/Reddit_BERTopic_MentalBERT")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 7
  • Number of training documents: 500
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 im - like - dont - feel - people 12 -1_im_like_dont_feel
0 im - like - anxiety - dont - feel 206 0_im_like_anxiety_dont
1 hesitant - uneasy - undecided - undecided uneasy - uneasy hesitant 108 1_hesitant_uneasy_undecided_undecided uneasy
2 im - like - feel - dont - know 72 2_im_like_feel_dont
3 therapy - therapist - help - like - please 45 3_therapy_therapist_help_like
4 nan - deleted - every time - nan deleted - time 40 4_nan_deleted_every time_nan deleted
5 im - proud - go - happy - congrats 17 5_im_proud_go_happy

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 3)
  • nr_topics: 7
  • seed_topic_list: None
  • top_n_words: 15
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.9.post2
  • Pandas: 2.3.0
  • Scikit-Learn: 1.7.0
  • Sentence-transformers: 5.0.0
  • Transformers: 4.52.4
  • Numba: 0.61.2
  • Plotly: 6.2.0
  • Python: 3.11.13
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support