Realgon's picture
End of training
d97de7d
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - ag_news
metrics:
  - accuracy
model-index:
  - name: N_bert_agnews_padding0model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ag_news
          type: ag_news
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9476315789473684

N_bert_agnews_padding0model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5653
  • Accuracy: 0.9476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1773 1.0 7500 0.1841 0.9433
0.1354 2.0 15000 0.2061 0.9463
0.1138 3.0 22500 0.2455 0.9428
0.0852 4.0 30000 0.2881 0.9429
0.0627 5.0 37500 0.3271 0.9433
0.0436 6.0 45000 0.3524 0.9441
0.034 7.0 52500 0.3977 0.9424
0.0251 8.0 60000 0.4291 0.9441
0.0205 9.0 67500 0.4399 0.9420
0.0167 10.0 75000 0.4574 0.9429
0.0218 11.0 82500 0.4979 0.9429
0.0119 12.0 90000 0.5000 0.9438
0.0112 13.0 97500 0.4856 0.9454
0.0054 14.0 105000 0.5294 0.9457
0.0039 15.0 112500 0.5418 0.9459
0.0024 16.0 120000 0.5065 0.9468
0.0011 17.0 127500 0.5511 0.9458
0.0013 18.0 135000 0.5411 0.9471
0.0002 19.0 142500 0.5555 0.9472
0.0005 20.0 150000 0.5653 0.9476

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3