N_bert_agnews_padding10model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5739
  • Accuracy: 0.9457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.176 1.0 7500 0.1846 0.9449
0.1315 2.0 15000 0.1942 0.9455
0.1116 3.0 22500 0.2441 0.9434
0.0804 4.0 30000 0.3103 0.9421
0.0548 5.0 37500 0.2975 0.9429
0.0417 6.0 45000 0.3861 0.9413
0.0299 7.0 52500 0.4010 0.9388
0.0325 8.0 60000 0.4365 0.9428
0.0232 9.0 67500 0.4431 0.9429
0.0173 10.0 75000 0.4699 0.9386
0.0139 11.0 82500 0.4937 0.9412
0.0121 12.0 90000 0.4899 0.9439
0.0047 13.0 97500 0.5263 0.9449
0.0106 14.0 105000 0.5317 0.9436
0.0028 15.0 112500 0.5426 0.9426
0.0052 16.0 120000 0.5332 0.9472
0.0025 17.0 127500 0.5458 0.9464
0.0023 18.0 135000 0.5433 0.9442
0.0003 19.0 142500 0.5707 0.9461
0.0009 20.0 150000 0.5739 0.9457

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Realgon/N_bert_agnews_padding10model

Finetuned
(5735)
this model

Dataset used to train Realgon/N_bert_agnews_padding10model

Evaluation results