Realgon's picture
End of training
f523eee
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - imdb
metrics:
  - accuracy
model-index:
  - name: N_bert_imdb_padding10model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: imdb
          type: imdb
          config: plain_text
          split: test
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.93976

N_bert_imdb_padding10model

This model is a fine-tuned version of bert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6695
  • Accuracy: 0.9398

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2175 1.0 1563 0.2147 0.9269
0.1483 2.0 3126 0.2123 0.9384
0.0912 3.0 4689 0.2707 0.9325
0.0569 4.0 6252 0.3262 0.9314
0.042 5.0 7815 0.3316 0.9372
0.0373 6.0 9378 0.4147 0.9365
0.0181 7.0 10941 0.4632 0.936
0.0144 8.0 12504 0.5192 0.9338
0.0138 9.0 14067 0.4934 0.9388
0.0094 10.0 15630 0.5627 0.9363
0.0091 11.0 17193 0.6356 0.9285
0.0114 12.0 18756 0.5780 0.9368
0.0025 13.0 20319 0.6362 0.9402
0.0067 14.0 21882 0.5902 0.9388
0.0043 15.0 23445 0.6124 0.9387
0.0029 16.0 25008 0.5929 0.9380
0.0001 17.0 26571 0.6554 0.9394
0.0005 18.0 28134 0.6619 0.9408
0.0019 19.0 29697 0.6654 0.9398
0.0 20.0 31260 0.6695 0.9398

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3