|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imdb |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: N_bert_imdb_padding50model |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: imdb |
|
type: imdb |
|
config: plain_text |
|
split: test |
|
args: plain_text |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.93852 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# N_bert_imdb_padding50model |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7352 |
|
- Accuracy: 0.9385 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.2185 | 1.0 | 1563 | 0.2445 | 0.9211 | |
|
| 0.1562 | 2.0 | 3126 | 0.1966 | 0.9369 | |
|
| 0.0924 | 3.0 | 4689 | 0.3358 | 0.9287 | |
|
| 0.0576 | 4.0 | 6252 | 0.3586 | 0.9308 | |
|
| 0.0493 | 5.0 | 7815 | 0.3533 | 0.9346 | |
|
| 0.0362 | 6.0 | 9378 | 0.4772 | 0.9287 | |
|
| 0.019 | 7.0 | 10941 | 0.4636 | 0.9328 | |
|
| 0.0282 | 8.0 | 12504 | 0.4084 | 0.9350 | |
|
| 0.0155 | 9.0 | 14067 | 0.4659 | 0.9302 | |
|
| 0.0119 | 10.0 | 15630 | 0.5622 | 0.9342 | |
|
| 0.0074 | 11.0 | 17193 | 0.5651 | 0.9338 | |
|
| 0.0047 | 12.0 | 18756 | 0.5859 | 0.9348 | |
|
| 0.006 | 13.0 | 20319 | 0.6266 | 0.9342 | |
|
| 0.0067 | 14.0 | 21882 | 0.6573 | 0.9308 | |
|
| 0.0044 | 15.0 | 23445 | 0.6579 | 0.9370 | |
|
| 0.0 | 16.0 | 25008 | 0.6971 | 0.9386 | |
|
| 0.0011 | 17.0 | 26571 | 0.7194 | 0.9377 | |
|
| 0.0 | 18.0 | 28134 | 0.7164 | 0.9392 | |
|
| 0.0 | 19.0 | 29697 | 0.7198 | 0.9391 | |
|
| 0.0 | 20.0 | 31260 | 0.7352 | 0.9385 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|