N_bert_twitterfin_padding10model
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9504
- Accuracy: 0.8941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5941 | 1.0 | 597 | 0.3676 | 0.8681 |
0.3264 | 2.0 | 1194 | 0.3223 | 0.8886 |
0.2271 | 3.0 | 1791 | 0.4276 | 0.8886 |
0.1373 | 4.0 | 2388 | 0.5792 | 0.8819 |
0.0979 | 5.0 | 2985 | 0.6505 | 0.8832 |
0.0411 | 6.0 | 3582 | 0.7322 | 0.8878 |
0.0376 | 7.0 | 4179 | 0.7613 | 0.8807 |
0.022 | 8.0 | 4776 | 0.7982 | 0.8894 |
0.0217 | 9.0 | 5373 | 0.8054 | 0.8886 |
0.0266 | 10.0 | 5970 | 0.8280 | 0.8932 |
0.0142 | 11.0 | 6567 | 0.8836 | 0.8857 |
0.0062 | 12.0 | 7164 | 0.8788 | 0.8907 |
0.0119 | 13.0 | 7761 | 0.8796 | 0.8941 |
0.0031 | 14.0 | 8358 | 0.8968 | 0.8903 |
0.0096 | 15.0 | 8955 | 0.8962 | 0.8915 |
0.0027 | 16.0 | 9552 | 0.9295 | 0.8945 |
0.0024 | 17.0 | 10149 | 0.9298 | 0.8961 |
0.0027 | 18.0 | 10746 | 0.9663 | 0.8932 |
0.0017 | 19.0 | 11343 | 0.9372 | 0.8932 |
0.0024 | 20.0 | 11940 | 0.9504 | 0.8941 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 8
Model tree for Realgon/N_bert_twitterfin_padding10model
Base model
google-bert/bert-base-uncased