N_distilbert_sst2_padding30model

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8867
  • Accuracy: 0.9023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 433 0.2836 0.8814
0.3476 2.0 866 0.2705 0.9012
0.1836 3.0 1299 0.3451 0.9083
0.0887 4.0 1732 0.4852 0.9066
0.0451 5.0 2165 0.5730 0.9044
0.0245 6.0 2598 0.7197 0.8924
0.0186 7.0 3031 0.6648 0.8990
0.0186 8.0 3464 0.6407 0.9023
0.017 9.0 3897 0.8361 0.8913
0.009 10.0 4330 0.7010 0.9044
0.0169 11.0 4763 0.7497 0.9050
0.0087 12.0 5196 0.7683 0.9039
0.0073 13.0 5629 0.8405 0.8979
0.0036 14.0 6062 0.7964 0.9066
0.0036 15.0 6495 0.8325 0.9055
0.002 16.0 6928 0.8294 0.9039
0.0045 17.0 7361 0.8773 0.8995
0.0019 18.0 7794 0.8825 0.9028
0.0032 19.0 8227 0.9006 0.9023
0.0008 20.0 8660 0.8867 0.9023

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Realgon/N_distilbert_sst2_padding30model

Finetuned
(9646)
this model