Realgon's picture
End of training
2be04f7
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
datasets:
  - ag_news
metrics:
  - accuracy
model-index:
  - name: N_roberta_agnews_padding50model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ag_news
          type: ag_news
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9485526315789473

N_roberta_agnews_padding50model

This model is a fine-tuned version of roberta-base on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5524
  • Accuracy: 0.9486

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1998 1.0 7500 0.2132 0.9382
0.1682 2.0 15000 0.2009 0.9475
0.1506 3.0 22500 0.2273 0.9446
0.1294 4.0 30000 0.2495 0.9482
0.1028 5.0 37500 0.2612 0.9459
0.0797 6.0 45000 0.2966 0.9457
0.0646 7.0 52500 0.3040 0.9458
0.0531 8.0 60000 0.3825 0.9446
0.0443 9.0 67500 0.3838 0.9425
0.0345 10.0 75000 0.3968 0.9475
0.0395 11.0 82500 0.4132 0.9474
0.019 12.0 90000 0.4612 0.9453
0.0219 13.0 97500 0.4559 0.9458
0.0067 14.0 105000 0.4692 0.9467
0.0065 15.0 112500 0.5118 0.9461
0.0045 16.0 120000 0.5115 0.9470
0.004 17.0 127500 0.5326 0.9472
0.0079 18.0 135000 0.5088 0.9483
0.0039 19.0 142500 0.5359 0.9504
0.0024 20.0 150000 0.5524 0.9486

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3