Realgon's picture
End of training
a57fb0b
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
datasets:
  - ag_news
metrics:
  - accuracy
model-index:
  - name: N_roberta_agnews_padding60model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ag_news
          type: ag_news
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9460526315789474

N_roberta_agnews_padding60model

This model is a fine-tuned version of roberta-base on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5823
  • Accuracy: 0.9461

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2028 1.0 7500 0.2106 0.9407
0.1643 2.0 15000 0.1864 0.9475
0.1536 3.0 22500 0.2135 0.9455
0.1243 4.0 30000 0.2261 0.9468
0.1045 5.0 37500 0.2428 0.9468
0.0861 6.0 45000 0.2795 0.9434
0.0767 7.0 52500 0.3035 0.9470
0.0532 8.0 60000 0.3571 0.9461
0.0532 9.0 67500 0.3586 0.9426
0.0342 10.0 75000 0.4128 0.9434
0.026 11.0 82500 0.4228 0.9470
0.0226 12.0 90000 0.4714 0.9434
0.0209 13.0 97500 0.4663 0.9458
0.0127 14.0 105000 0.4939 0.9436
0.0082 15.0 112500 0.4959 0.9483
0.0142 16.0 120000 0.5230 0.9461
0.0024 17.0 127500 0.5710 0.9445
0.0082 18.0 135000 0.5560 0.9459
0.0034 19.0 142500 0.5778 0.9462
0.0018 20.0 150000 0.5823 0.9461

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3