Realgon's picture
End of training
e6ca6dc
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
datasets:
  - ag_news
metrics:
  - accuracy
model-index:
  - name: N_roberta_agnews_padding90model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ag_news
          type: ag_news
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9481578947368421

N_roberta_agnews_padding90model

This model is a fine-tuned version of roberta-base on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5490
  • Accuracy: 0.9482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1972 1.0 7500 0.2055 0.9412
0.1723 2.0 15000 0.1951 0.9463
0.1529 3.0 22500 0.2150 0.9461
0.1256 4.0 30000 0.2472 0.9457
0.1092 5.0 37500 0.2550 0.9459
0.0729 6.0 45000 0.2972 0.9479
0.0801 7.0 52500 0.3123 0.9453
0.058 8.0 60000 0.3705 0.9463
0.0463 9.0 67500 0.3698 0.9438
0.0387 10.0 75000 0.3702 0.9495
0.0299 11.0 82500 0.4177 0.9474
0.0235 12.0 90000 0.4637 0.9432
0.0172 13.0 97500 0.4843 0.9464
0.0144 14.0 105000 0.4647 0.9483
0.0147 15.0 112500 0.4965 0.9468
0.0124 16.0 120000 0.5153 0.9470
0.006 17.0 127500 0.5196 0.9483
0.0047 18.0 135000 0.5287 0.9480
0.0056 19.0 142500 0.5443 0.9480
0.0012 20.0 150000 0.5490 0.9482

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3