DeepSeek-Coder-V2-Instruct-0724-FP8
Model Overview
- Model Architecture: DeepSeek-Coder-V2-Instruct-0724
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date: 3/1/2025
- Version: 1.0
- Model Developers: Neural Magic
Quantized version of DeepSeek-Coder-V2-Instruct-0724.
Model Optimizations
This model was obtained by quantizing weights and activations to FP8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized, except the MLP routers.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 4
model_name = "neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below with the following command:
python quantize.py --model_path deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 --quant_path "output_dir" --calib_size 128
import argparse
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
import torch
import os
def main():
# Set up command line argument parsing
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
parser.add_argument('--model_id', type=str, required=True,
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
parser.add_argument('--save_path', type=str, default='.',
help='Custom path to save the quantized model. If not provided, will use model_name-FP8')
parser.add_argument('--calib_size', type=int, default=256)
args = parser.parse_args()
device_map = calculate_offload_device_map(
args.model_id,
reserve_for_hessians=False,
num_gpus=torch.cuda.device_count(),
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
args.model_id, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
NUM_CALIBRATION_SAMPLES = args.calib_size
DATASET_ID = "garage-bAInd/Open-Platypus"
DATASET_SPLIT = "train"
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
concat_txt = example["instruction"] + "\n" + example["output"]
return {"text": concat_txt}
ds = ds.map(preprocess)
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
truncation=False,
add_special_tokens=True,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
targets="Linear", scheme="FP8", ignore=["lm_head", "re:.*\.mlp\.gate$"]
)
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
num_calibration_samples=args.calib_size
)
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8")
os.makedirs(save_path, exist_ok=True)
# Save to disk in compressed-tensors format
model.save_pretrained(save_path, save_compressed=True, skip_compression_stats=True)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
if __name__ == "__main__":
main()
Evaluation
The model was evaluated on HumanEval and HumanEval+ benchmark with the Neural Magic fork of the EvalPlus implementation of HumanEval+ and the vLLM engine, using the following commands:
python evalplus/codegen/generate.py --model neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8 --bs 16 --temperature 0.2 --n_samples 50 --root "./results" --dataset humaneval --backend vllm --dtype auto --tp 8
python evalplus/evalplus/sanitize.py results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-FP8_vllm_temp_0.2
evalplus.evaluate --dataset humaneval --samples results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-FP8_vllm_temp_0.2-sanitized
Accuracy
HumanEval evaluation scores
Metric | deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 | neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8 |
---|---|---|
HumanEval pass@1 | 89.3 | 88.7 |
HumanEval pass@10 | 93.1 | 92.9 |
HumanEval+ pass@1 | 82.9 | 82.8 |
HumanEval+ pass@10 | 87.6 | 86.9 |
Average Score | 88.23 | 87.83 |
Recovery | 100.00 | 99.55 |
- Downloads last month
- 31
Model tree for RedHatAI/DeepSeek-Coder-V2-Instruct-0724-FP8
Base model
deepseek-ai/DeepSeek-Coder-V2-Base