DeepSeek-Coder-V2-Instruct-0724-FP8

Model Overview

  • Model Architecture: DeepSeek-Coder-V2-Instruct-0724
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date: 3/1/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of DeepSeek-Coder-V2-Instruct-0724.

Model Optimizations

This model was obtained by quantizing weights and activations to FP8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized, except the MLP routers.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 4096, 4
model_name = "neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below with the following command:

python quantize.py --model_path deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 --quant_path "output_dir" --calib_size 128 
import argparse
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
import torch
import os


def main():
    # Set up command line argument parsing
    parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
    parser.add_argument('--model_id', type=str, required=True,
                        help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
    parser.add_argument('--save_path', type=str, default='.',
                        help='Custom path to save the quantized model. If not provided, will use model_name-FP8')
    parser.add_argument('--calib_size', type=int, default=256)
    args = parser.parse_args()

    device_map = calculate_offload_device_map(
        args.model_id,
        reserve_for_hessians=False,
        num_gpus=torch.cuda.device_count(),
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
    )

    model = AutoModelForCausalLM.from_pretrained(
        args.model_id, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True,
    )
    tokenizer = AutoTokenizer.from_pretrained(args.model_id)

    NUM_CALIBRATION_SAMPLES = args.calib_size
    DATASET_ID = "garage-bAInd/Open-Platypus"
    DATASET_SPLIT = "train"
    ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
    ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

    def preprocess(example):
        concat_txt = example["instruction"] + "\n" + example["output"]
        return {"text": concat_txt}

    ds = ds.map(preprocess)

    def tokenize(sample):
        return tokenizer(
            sample["text"],
            padding=False,
            truncation=False,
            add_special_tokens=True,
        )

    ds = ds.map(tokenize, remove_columns=ds.column_names)

    # Configure the quantization algorithm and scheme
    recipe = QuantizationModifier(
        targets="Linear", scheme="FP8", ignore=["lm_head", "re:.*\.mlp\.gate$"]
    )

    # Apply quantization
    oneshot(
        model=model,
        dataset=ds,
        recipe=recipe,
        num_calibration_samples=args.calib_size
    )

    save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8")
    os.makedirs(save_path, exist_ok=True)

    # Save to disk in compressed-tensors format
    model.save_pretrained(save_path, save_compressed=True, skip_compression_stats=True)
    tokenizer.save_pretrained(save_path)
    print(f"Model and tokenizer saved to: {save_path}")

if __name__ == "__main__":
    main()

Evaluation

The model was evaluated on HumanEval and HumanEval+ benchmark with the Neural Magic fork of the EvalPlus implementation of HumanEval+ and the vLLM engine, using the following commands:

python evalplus/codegen/generate.py --model neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8 --bs 16 --temperature 0.2 --n_samples 50 --root "./results" --dataset humaneval --backend vllm --dtype auto --tp 8 

python evalplus/evalplus/sanitize.py results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-FP8_vllm_temp_0.2

evalplus.evaluate --dataset humaneval --samples results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-FP8_vllm_temp_0.2-sanitized

Accuracy

HumanEval evaluation scores

Metric deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8
HumanEval pass@1 89.3 88.7
HumanEval pass@10 93.1 92.9
HumanEval+ pass@1 82.9 82.8
HumanEval+ pass@10 87.6 86.9
Average Score 88.23 87.83
Recovery 100.00 99.55
Downloads last month
31
Safetensors
Model size
236B params
Tensor type
BF16
·
F8_E4M3
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RedHatAI/DeepSeek-Coder-V2-Instruct-0724-FP8

Quantized
(2)
this model