Devstral-Small-2507-quantized.w4a16
Model Overview
- Model Architecture: MistralForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Activation quantization: INT4
- Weight quantization: None
- Release Date: 08/29/2025
- Version: 1.0
- Model Developers: Red Hat (Neural Magic)
Model Optimizations
This model was obtained by quantizing weights of Devstral-Small-2507 to INT4 data type. This optimization reduces the number of bits used to represent weights from 16 to 4, reducing GPU memory requirements (by approximately 75%). Weight quantization also reduces disk size requirements by approximately 75%.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
vllm serve RedHatAI/Devstral-Small-2507-quantized.w4a16 --tensor-parallel-size 1 --tokenizer_mode mistral
Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
python quantize.py --model_path mistralai/Devstral-Small-2507 --calib_size 1024 --dampening_frac 0.1 --observer mse --sym false --actorder weight
import argparse
import os
from datasets import load_dataset
from transformers import AutoModelForCausalLM
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.protocol.instruct.messages import (
SystemMessage, UserMessage
)
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = os.path.join(repo_id, filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
def parse_actorder(value):
if value.lower() == "false":
return False
elif value.lower() == "weight":
return "weight"
elif value.lower() == "group":
return "group"
else:
raise argparse.ArgumentTypeError("Invalid value for --actorder.")
def parse_sym(value):
if value.lower() == "false":
return False
elif value.lower() == "true":
return True
else:
raise argparse.ArgumentTypeError(f"Invalid value for --sym. Use false or true, but got {value}")
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.1)
parser.add_argument('--observer', type=str, default="minmax")
parser.add_argument('--sym', type=parse_sym, default=True)
parser.add_argument(
'--actorder',
type=parse_actorder,
default=False,
help="Specify actorder as 'group' (string) or False (boolean)."
)
args = parser.parse_args()
model = AutoModelForCausalLM.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
use_cache=False,
trust_remote_code=True,
)
ds = load_dataset("garage-bAInd/Open-Platypus", split="train")
ds = ds.shuffle(seed=42).select(range(args.calib_size))
SYSTEM_PROMPT = load_system_prompt(args.model_path, "SYSTEM_PROMPT.txt")
tokenizer = MistralTokenizer.from_hf_hub("mistralai/Devstral-Small-2507")
def tokenize(sample):
tmp = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
SystemMessage(content=SYSTEM_PROMPT),
UserMessage(content=sample['instruction']),
],
)
)
return {'input_ids': tmp.tokens}
ds = ds.map(tokenize, remove_columns=ds.column_names)
quant_scheme = QuantizationScheme(
targets=["Linear"],
weights=QuantizationArgs(
num_bits=4,
type=QuantizationType.INT,
symmetric=args.sym,
group_size=128,
strategy=QuantizationStrategy.GROUP,
observer=args.observer,
actorder=args.actorder
),
input_activations=None,
output_activations=None,
)
recipe = [
GPTQModifier(
targets=["Linear"],
ignore=["lm_head"],
dampening_frac=args.dampening_frac,
config_groups={"group_0": quant_scheme},
)
]
oneshot(
model=model,
dataset=ds,
recipe=recipe,
num_calibration_samples=args.calib_size,
max_seq_length=8192,
)
save_path = args.model_path + "-quantized.w4a16"
model.save_pretrained(save_path)
Evaluation
The model was evaluated on popular coding tasks (HumanEval, HumanEval+, MBPP, MBPP+) via EvalPlus and vllm backend (v0.10.1.1). For evaluations, we run greedy sampling and report pass@1. The command to reproduce evals:
evalplus.evaluate --model "RedHatAI/Devstral-Small-2507-quantized.w4a16" \
--dataset [humaneval|mbpp] \
--base-url http://localhost:8000/v1 \
--backend openai --greedy
Accuracy
Recovery (%) | mistralai/Devstral-Small-2507 | RedHatAI/Devstral-Small-2507-quantized.w4a16 (this model) |
|
---|---|---|---|
HumanEval | 98.65 | 89.0 | 87.8 |
HumanEval+ | 100.0 | 81.1 | 81.1 |
MBPP | 98.97 | 77.5 | 76.7 |
MBPP+ | 102.12 | 66.1 | 67.5 |
Average Score | 99.81 | 78.43 | 78.28 |
- Downloads last month
- 16
Model tree for RedHatAI/Devstral-Small-2507-quantized.w4a16
Base model
mistralai/Mistral-Small-3.1-24B-Base-2503
Finetuned
mistralai/Devstral-Small-2507