Meta-Llama-3.1-70B-Instruct-NVFP4A16
Model Overview
- Model Architecture: Meta-Llama-3.1
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP4
- Activation quantization: FP16
- Intended Use Cases: Intended for commercial and research use in multiple languages. Similarly to Meta-Llama-3.1-8B-Instruct, this models is intended for assistant-like chat.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- Release Date: 6/25/2025
- Version: 1.0
- License(s): llama3.1
- Model Developers: RedHatAI
This model is a quantized version of Meta-Llama-3.1-70B-Instruct. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
Model Optimizations
This model was obtained by quantizing the weights of Meta-Llama-3.1-70B-Instruct to FP4 data type, ready for inference with vLLM>=0.9.1 This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights of the linear operators within transformers blocks are quantized using LLM Compressor.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16"
number_gpus = 2
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created by applying LLM Compressor with calibration samples from UltraChat, as presented in the code snipet below.
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
# Load model.
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp4 with per group 16 via ptq
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4A16", ignore=["lm_head"])
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4A16"
# Apply quantization.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
output_dir=SAVE_DIR,
)
print("\n\n")
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using lm-evaluation-harness.
Accuracy
Category | Metric | Meta-Llama-3.1-70B-Instruct | RedHatAI/Llama-3.1-70B-Instruct-NVFP4 (this model) | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC Challenge Llama | 95.02 | 94.33 | 99.27% |
GSM8K Llama (8-shot, strict-match) | 94.62 | 93.48 | 98.80% | |
MMLU Llama | 84.10 | 82.58 | 98.19% | |
MMLU cot Llama (0-shot) | 86.08 | 84.58 | 98.26% | |
Hellaswag (10-shot) | 78.82 | 78.60 | 98.26% | |
TruthfulQA (0-shot, mc2) | 66.88 | 65.42 | 97.82% | |
Winogrande (5-shot) | 74.27 | 73.24 | 98.61% | |
Average | 82.83 | 81.75 | 98.70% | |
OpenLLM V2 | MMLU-Pro (5-shot) | 53.42 | 51.09 | 95.64% |
IFEval (0-shot) | 89.21 | 87.89 | 98.52% | |
BBH (3-shot) | 69.05 | 67.84 | 98.25% | |
Math-|v|-5 (4-shot) | 2.79 | 3.25 | 116.49% | |
GPQA (0-shot) | 38.17 | 34.82 | 91.22% | |
MuSR (0-shot) | 45.77 | 45.77 | 100.00% | |
Average | 49.81 | 48.45 | 97.28% | |
Coding | HumanEval Instruct pass@1 | 57.93 | 56.71 | 97.89% |
HumanEval 64 Instruct pass@2 | 69.75 | 68.91 | 98.80% | |
HumanEval 64 Instruct pass@8 | 82.59 | 81.53 | 98.72% | |
HumanEval 64 Instruct pass@16 | 85.75 | 84.45 | 98.48% | |
HumanEval 64 Instruct pass@32 | 88.05 | 86.63 | 98.39% | |
HumanEval 64 Instruct pass@64 | 89.63 | 88.41 | 98.64% |
Reproduction
The results were obtained using the following commands:
MMLU_LLAMA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks mmlu_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
MMLU_COT_LLAMA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks mmlu_cot_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
ARC-Challenge
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks arc_challenge_llama \
--apply_chat_template \
--batch_size auto
GSM-8K
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks gsm8k_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
Hellaswag
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks hellaswag \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
Winogrande
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks winogrande \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
TruthfulQA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks truthfulqa \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
OpenLLM v2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
HumanEval and HumanEval_64
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_instruct \
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Meta-Llama-3.1-70B-Instruct-NVFP4A16",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_64_instruct \
--batch_size auto
- Downloads last month
- 12
Model tree for RedHatAI/Llama-3.1-70B-Instruct-NVFP4A16
Base model
meta-llama/Llama-3.1-70B