all-MiniLM-L6-v8-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'deluxe mug for morning coffee',
'polyfibre scarf',
'cheddar cheese burrito',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0014 | 100 | 11.4553 |
0.0028 | 200 | 11.5147 |
0.0042 | 300 | 11.1304 |
0.0056 | 400 | 10.7925 |
0.0070 | 500 | 10.4493 |
0.0084 | 600 | 10.2631 |
0.0098 | 700 | 9.987 |
0.0112 | 800 | 9.8477 |
0.0126 | 900 | 9.6295 |
0.0140 | 1000 | 9.3638 |
0.0153 | 1100 | 9.1913 |
0.0167 | 1200 | 8.9688 |
0.0181 | 1300 | 8.808 |
0.0195 | 1400 | 8.6993 |
0.0209 | 1500 | 8.6078 |
0.0223 | 1600 | 8.5739 |
0.0237 | 1700 | 8.5575 |
0.0251 | 1800 | 8.5173 |
0.0265 | 1900 | 8.4983 |
0.0279 | 2000 | 8.4662 |
0.0293 | 2100 | 8.4408 |
0.0307 | 2200 | 8.4136 |
0.0321 | 2300 | 8.4002 |
0.0335 | 2400 | 8.3883 |
0.0349 | 2500 | 8.3785 |
0.0363 | 2600 | 8.3458 |
0.0377 | 2700 | 8.3617 |
0.0391 | 2800 | 8.3338 |
0.0405 | 2900 | 8.3281 |
0.0419 | 3000 | 8.3043 |
0.0433 | 3100 | 8.3087 |
0.0447 | 3200 | 8.2913 |
0.0460 | 3300 | 8.2854 |
0.0474 | 3400 | 8.2408 |
0.0488 | 3500 | 8.2628 |
0.0502 | 3600 | 8.2401 |
0.0516 | 3700 | 8.2538 |
0.0530 | 3800 | 8.2103 |
0.0544 | 3900 | 8.2221 |
0.0558 | 4000 | 8.2248 |
0.0572 | 4100 | 8.2045 |
0.0586 | 4200 | 8.2008 |
0.0600 | 4300 | 8.196 |
0.0614 | 4400 | 8.1757 |
0.0628 | 4500 | 8.1845 |
0.0642 | 4600 | 8.1714 |
0.0656 | 4700 | 8.1745 |
0.0670 | 4800 | 8.1702 |
0.0684 | 4900 | 8.1767 |
0.0698 | 5000 | 8.1379 |
0.0712 | 5100 | 8.1473 |
0.0726 | 5200 | 8.1443 |
0.0740 | 5300 | 8.1173 |
0.0754 | 5400 | 8.121 |
0.0767 | 5500 | 8.136 |
0.0781 | 5600 | 8.1246 |
0.0795 | 5700 | 8.0983 |
0.0809 | 5800 | 8.1023 |
0.0823 | 5900 | 8.1013 |
0.0837 | 6000 | 8.0657 |
0.0851 | 6100 | 8.0998 |
0.0865 | 6200 | 8.0585 |
0.0879 | 6300 | 8.1082 |
0.0893 | 6400 | 8.0652 |
0.0907 | 6500 | 8.0808 |
0.0921 | 6600 | 8.0756 |
0.0935 | 6700 | 8.0279 |
0.0949 | 6800 | 8.0659 |
0.0963 | 6900 | 8.0428 |
0.0977 | 7000 | 8.0363 |
0.0991 | 7100 | 8.0343 |
0.1005 | 7200 | 8.0488 |
0.1019 | 7300 | 8.0225 |
0.1033 | 7400 | 8.0203 |
0.1047 | 7500 | 8.0248 |
0.1061 | 7600 | 7.9882 |
0.1074 | 7700 | 7.9956 |
0.1088 | 7800 | 8.0338 |
0.1102 | 7900 | 7.9827 |
0.1116 | 8000 | 7.9849 |
0.1130 | 8100 | 8.0072 |
0.1144 | 8200 | 7.9708 |
0.1158 | 8300 | 7.9786 |
0.1172 | 8400 | 7.9983 |
0.1186 | 8500 | 7.9762 |
0.1200 | 8600 | 7.9955 |
0.1214 | 8700 | 7.9969 |
0.1228 | 8800 | 7.9913 |
0.1242 | 8900 | 7.9512 |
0.1256 | 9000 | 7.9672 |
0.1270 | 9100 | 7.9853 |
0.1284 | 9200 | 7.9626 |
0.1298 | 9300 | 7.9767 |
0.1312 | 9400 | 7.9404 |
0.1326 | 9500 | 7.9076 |
0.1340 | 9600 | 7.968 |
0.1354 | 9700 | 7.9432 |
0.1367 | 9800 | 7.9255 |
0.1381 | 9900 | 7.9095 |
0.1395 | 10000 | 7.9337 |
0.1409 | 10100 | 7.9464 |
0.1423 | 10200 | 7.9218 |
0.1437 | 10300 | 7.9102 |
0.1451 | 10400 | 7.9379 |
0.1465 | 10500 | 7.8907 |
0.1479 | 10600 | 7.8968 |
0.1493 | 10700 | 7.9193 |
0.1507 | 10800 | 7.9327 |
0.1521 | 10900 | 7.896 |
0.1535 | 11000 | 7.9228 |
0.1549 | 11100 | 7.9253 |
0.1563 | 11200 | 7.8825 |
0.1577 | 11300 | 7.8812 |
0.1591 | 11400 | 7.8883 |
0.1605 | 11500 | 7.8721 |
0.1619 | 11600 | 7.9218 |
0.1633 | 11700 | 7.8893 |
0.1647 | 11800 | 7.8961 |
0.1661 | 11900 | 7.8647 |
0.1674 | 12000 | 7.89 |
0.1688 | 12100 | 7.8422 |
0.1702 | 12200 | 7.9348 |
0.1716 | 12300 | 7.8808 |
0.1730 | 12400 | 7.8788 |
0.1744 | 12500 | 7.8794 |
0.1758 | 12600 | 7.848 |
0.1772 | 12700 | 7.8279 |
0.1786 | 12800 | 7.8655 |
0.1800 | 12900 | 7.8612 |
0.1814 | 13000 | 7.828 |
0.1828 | 13100 | 7.8419 |
0.1842 | 13200 | 7.8574 |
0.1856 | 13300 | 7.8688 |
0.1870 | 13400 | 7.8408 |
0.1884 | 13500 | 7.8172 |
0.1898 | 13600 | 7.8579 |
0.1912 | 13700 | 7.8392 |
0.1926 | 13800 | 7.849 |
0.1940 | 13900 | 7.8485 |
0.1954 | 14000 | 7.861 |
0.1968 | 14100 | 7.8257 |
0.1981 | 14200 | 7.8647 |
0.1995 | 14300 | 7.857 |
0.2009 | 14400 | 7.8031 |
0.2023 | 14500 | 7.8498 |
0.2037 | 14600 | 7.8175 |
0.2051 | 14700 | 7.8474 |
0.2065 | 14800 | 7.8158 |
0.2079 | 14900 | 7.7777 |
0.2093 | 15000 | 7.8362 |
0.2107 | 15100 | 7.8387 |
0.2121 | 15200 | 7.8225 |
0.2135 | 15300 | 7.8627 |
0.2149 | 15400 | 7.8543 |
0.2163 | 15500 | 7.8096 |
0.2177 | 15600 | 7.8201 |
0.2191 | 15700 | 7.8178 |
0.2205 | 15800 | 7.8138 |
0.2219 | 15900 | 7.8384 |
0.2233 | 16000 | 7.7811 |
0.2247 | 16100 | 7.82 |
0.2261 | 16200 | 7.7731 |
0.2275 | 16300 | 7.8508 |
0.2288 | 16400 | 7.8087 |
0.2302 | 16500 | 7.7959 |
0.2316 | 16600 | 7.7857 |
0.2330 | 16700 | 7.7946 |
0.2344 | 16800 | 7.7884 |
0.2358 | 16900 | 7.8226 |
0.2372 | 17000 | 7.7811 |
0.2386 | 17100 | 7.778 |
0.2400 | 17200 | 7.7825 |
0.2414 | 17300 | 7.782 |
0.2428 | 17400 | 7.8164 |
0.2442 | 17500 | 7.7514 |
0.2456 | 17600 | 7.7744 |
0.2470 | 17700 | 7.7974 |
0.2484 | 17800 | 7.7913 |
0.2498 | 17900 | 7.757 |
0.2512 | 18000 | 7.7724 |
0.2526 | 18100 | 7.7772 |
0.2540 | 18200 | 7.7723 |
0.2554 | 18300 | 7.753 |
0.2568 | 18400 | 7.8055 |
0.2581 | 18500 | 7.7878 |
0.2595 | 18600 | 7.7822 |
0.2609 | 18700 | 7.7923 |
0.2623 | 18800 | 7.8378 |
0.2637 | 18900 | 7.8226 |
0.2651 | 19000 | 7.8015 |
0.2665 | 19100 | 7.7355 |
0.2679 | 19200 | 7.789 |
0.2693 | 19300 | 7.7473 |
0.2707 | 19400 | 7.7521 |
0.2721 | 19500 | 7.7867 |
0.2735 | 19600 | 7.7597 |
0.2749 | 19700 | 7.7506 |
0.2763 | 19800 | 7.732 |
0.2777 | 19900 | 7.7288 |
0.2791 | 20000 | 7.7317 |
0.2805 | 20100 | 7.7495 |
0.2819 | 20200 | 7.7236 |
0.2833 | 20300 | 7.7489 |
0.2847 | 20400 | 7.7592 |
0.2861 | 20500 | 7.7455 |
0.2875 | 20600 | 7.7623 |
0.2888 | 20700 | 7.7774 |
0.2902 | 20800 | 7.7485 |
0.2916 | 20900 | 7.7043 |
0.2930 | 21000 | 7.8039 |
0.2944 | 21100 | 7.7383 |
0.2958 | 21200 | 7.759 |
0.2972 | 21300 | 7.7362 |
0.2986 | 21400 | 7.7788 |
0.3000 | 21500 | 7.7244 |
0.3014 | 21600 | 7.72 |
0.3028 | 21700 | 7.7453 |
0.3042 | 21800 | 7.729 |
0.3056 | 21900 | 7.7735 |
0.3070 | 22000 | 7.7185 |
0.3084 | 22100 | 7.7641 |
0.3098 | 22200 | 7.7293 |
0.3112 | 22300 | 7.7401 |
0.3126 | 22400 | 7.725 |
0.3140 | 22500 | 7.7315 |
0.3154 | 22600 | 7.716 |
0.3168 | 22700 | 7.7576 |
0.3182 | 22800 | 7.7088 |
0.3195 | 22900 | 7.7428 |
0.3209 | 23000 | 7.7266 |
0.3223 | 23100 | 7.7246 |
0.3237 | 23200 | 7.7084 |
0.3251 | 23300 | 7.7094 |
0.3265 | 23400 | 7.7081 |
0.3279 | 23500 | 7.7472 |
0.3293 | 23600 | 7.7581 |
0.3307 | 23700 | 7.7264 |
0.3321 | 23800 | 7.7262 |
0.3335 | 23900 | 7.7252 |
0.3349 | 24000 | 7.7219 |
0.3363 | 24100 | 7.706 |
0.3377 | 24200 | 7.7372 |
0.3391 | 24300 | 7.6965 |
0.3405 | 24400 | 7.6865 |
0.3419 | 24500 | 7.6798 |
0.3433 | 24600 | 7.6962 |
0.3447 | 24700 | 7.701 |
0.3461 | 24800 | 7.6722 |
0.3475 | 24900 | 7.7453 |
0.3489 | 25000 | 7.6463 |
0.3502 | 25100 | 7.7256 |
0.3516 | 25200 | 7.693 |
0.3530 | 25300 | 7.7306 |
0.3544 | 25400 | 7.7037 |
0.3558 | 25500 | 7.6733 |
0.3572 | 25600 | 7.7202 |
0.3586 | 25700 | 7.6866 |
0.3600 | 25800 | 7.715 |
0.3614 | 25900 | 7.6925 |
0.3628 | 26000 | 7.6961 |
0.3642 | 26100 | 7.6752 |
0.3656 | 26200 | 7.7377 |
0.3670 | 26300 | 7.6744 |
0.3684 | 26400 | 7.6698 |
0.3698 | 26500 | 7.6931 |
0.3712 | 26600 | 7.6789 |
0.3726 | 26700 | 7.6736 |
0.3740 | 26800 | 7.6918 |
0.3754 | 26900 | 7.7129 |
0.3768 | 27000 | 7.7179 |
0.3782 | 27100 | 7.6747 |
0.3795 | 27200 | 7.6809 |
0.3809 | 27300 | 7.6803 |
0.3823 | 27400 | 7.6777 |
0.3837 | 27500 | 7.6702 |
0.3851 | 27600 | 7.7005 |
0.3865 | 27700 | 7.6671 |
0.3879 | 27800 | 7.6873 |
0.3893 | 27900 | 7.6919 |
0.3907 | 28000 | 7.6987 |
0.3921 | 28100 | 7.6641 |
0.3935 | 28200 | 7.6449 |
0.3949 | 28300 | 7.6715 |
0.3963 | 28400 | 7.6672 |
0.3977 | 28500 | 7.6796 |
0.3991 | 28600 | 7.7085 |
0.4005 | 28700 | 7.6557 |
0.4019 | 28800 | 7.6592 |
0.4033 | 28900 | 7.6695 |
0.4047 | 29000 | 7.6734 |
0.4061 | 29100 | 7.6499 |
0.4075 | 29200 | 7.6472 |
0.4089 | 29300 | 7.6705 |
0.4102 | 29400 | 7.6856 |
0.4116 | 29500 | 7.6474 |
0.4130 | 29600 | 7.6581 |
0.4144 | 29700 | 7.6699 |
0.4158 | 29800 | 7.6693 |
0.4172 | 29900 | 7.6716 |
0.4186 | 30000 | 7.6594 |
0.4200 | 30100 | 7.6391 |
0.4214 | 30200 | 7.6758 |
0.4228 | 30300 | 7.652 |
0.4242 | 30400 | 7.6312 |
0.4256 | 30500 | 7.6538 |
0.4270 | 30600 | 7.6959 |
0.4284 | 30700 | 7.7324 |
0.4298 | 30800 | 7.6529 |
0.4312 | 30900 | 7.6528 |
0.4326 | 31000 | 7.7036 |
0.4340 | 31100 | 7.6794 |
0.4354 | 31200 | 7.6603 |
0.4368 | 31300 | 7.6372 |
0.4382 | 31400 | 7.6427 |
0.4396 | 31500 | 7.6852 |
0.4409 | 31600 | 7.6987 |
0.4423 | 31700 | 7.6385 |
0.4437 | 31800 | 7.701 |
0.4451 | 31900 | 7.6702 |
0.4465 | 32000 | 7.6551 |
0.4479 | 32100 | 7.6464 |
0.4493 | 32200 | 7.667 |
0.4507 | 32300 | 7.628 |
0.4521 | 32400 | 7.7012 |
0.4535 | 32500 | 7.6333 |
0.4549 | 32600 | 7.6707 |
0.4563 | 32700 | 7.6304 |
0.4577 | 32800 | 7.6719 |
0.4591 | 32900 | 7.6744 |
0.4605 | 33000 | 7.7102 |
0.4619 | 33100 | 7.6918 |
0.4633 | 33200 | 7.7018 |
0.4647 | 33300 | 7.6131 |
0.4661 | 33400 | 7.6476 |
0.4675 | 33500 | 7.6594 |
0.4689 | 33600 | 7.6301 |
0.4703 | 33700 | 7.6134 |
0.4716 | 33800 | 7.7383 |
0.4730 | 33900 | 7.6253 |
0.4744 | 34000 | 7.662 |
0.4758 | 34100 | 7.6341 |
0.4772 | 34200 | 7.6622 |
0.4786 | 34300 | 7.6429 |
0.4800 | 34400 | 7.6777 |
0.4814 | 34500 | 7.6089 |
0.4828 | 34600 | 7.6382 |
0.4842 | 34700 | 7.6324 |
0.4856 | 34800 | 7.6176 |
0.4870 | 34900 | 7.624 |
0.4884 | 35000 | 7.6163 |
0.4898 | 35100 | 7.6503 |
0.4912 | 35200 | 7.6609 |
0.4926 | 35300 | 7.6587 |
0.4940 | 35400 | 7.5999 |
0.4954 | 35500 | 7.586 |
0.4968 | 35600 | 7.6585 |
0.4982 | 35700 | 7.7349 |
0.4996 | 35800 | 7.642 |
0.5009 | 35900 | 7.646 |
0.5023 | 36000 | 7.5942 |
0.5037 | 36100 | 7.6477 |
0.5051 | 36200 | 7.6259 |
0.5065 | 36300 | 7.5926 |
0.5079 | 36400 | 7.6166 |
0.5093 | 36500 | 7.6323 |
0.5107 | 36600 | 7.6324 |
0.5121 | 36700 | 7.6411 |
0.5135 | 36800 | 7.6343 |
0.5149 | 36900 | 7.6313 |
0.5163 | 37000 | 7.6187 |
0.5177 | 37100 | 7.6545 |
0.5191 | 37200 | 7.6555 |
0.5205 | 37300 | 7.6984 |
0.5219 | 37400 | 7.6638 |
0.5233 | 37500 | 7.6093 |
0.5247 | 37600 | 7.5925 |
0.5261 | 37700 | 7.6281 |
0.5275 | 37800 | 7.6349 |
0.5289 | 37900 | 7.6152 |
0.5303 | 38000 | 7.6531 |
0.5316 | 38100 | 7.6078 |
0.5330 | 38200 | 7.6775 |
0.5344 | 38300 | 7.6268 |
0.5358 | 38400 | 7.641 |
0.5372 | 38500 | 7.6721 |
0.5386 | 38600 | 7.6069 |
0.5400 | 38700 | 7.6174 |
0.5414 | 38800 | 7.6407 |
0.5428 | 38900 | 7.6226 |
0.5442 | 39000 | 7.5843 |
0.5456 | 39100 | 7.6588 |
0.5470 | 39200 | 7.6405 |
0.5484 | 39300 | 7.5908 |
0.5498 | 39400 | 7.6203 |
0.5512 | 39500 | 7.608 |
0.5526 | 39600 | 7.6177 |
0.5540 | 39700 | 7.606 |
0.5554 | 39800 | 7.7102 |
0.5568 | 39900 | 7.6252 |
0.5582 | 40000 | 7.6235 |
0.5596 | 40100 | 7.6325 |
0.5610 | 40200 | 7.6146 |
0.5623 | 40300 | 7.6386 |
0.5637 | 40400 | 7.6189 |
0.5651 | 40500 | 7.638 |
0.5665 | 40600 | 7.5859 |
0.5679 | 40700 | 7.5737 |
0.5693 | 40800 | 7.6331 |
0.5707 | 40900 | 7.6265 |
0.5721 | 41000 | 7.6475 |
0.5735 | 41100 | 7.5966 |
0.5749 | 41200 | 7.6331 |
0.5763 | 41300 | 7.5655 |
0.5777 | 41400 | 7.6727 |
0.5791 | 41500 | 7.5972 |
0.5805 | 41600 | 7.5911 |
0.5819 | 41700 | 7.6734 |
0.5833 | 41800 | 7.6528 |
0.5847 | 41900 | 7.6063 |
0.5861 | 42000 | 7.6496 |
0.5875 | 42100 | 7.6225 |
0.5889 | 42200 | 7.6863 |
0.5903 | 42300 | 7.6145 |
0.5916 | 42400 | 7.6072 |
0.5930 | 42500 | 7.625 |
0.5944 | 42600 | 7.6087 |
0.5958 | 42700 | 7.6622 |
0.5972 | 42800 | 7.5619 |
0.5986 | 42900 | 7.6563 |
0.6000 | 43000 | 7.5958 |
0.6014 | 43100 | 7.6107 |
0.6028 | 43200 | 7.6208 |
0.6042 | 43300 | 7.5973 |
0.6056 | 43400 | 7.5928 |
0.6070 | 43500 | 7.637 |
0.6084 | 43600 | 7.5659 |
0.6098 | 43700 | 7.5921 |
0.6112 | 43800 | 7.5961 |
0.6126 | 43900 | 7.5614 |
0.6140 | 44000 | 7.6366 |
0.6154 | 44100 | 7.5947 |
0.6168 | 44200 | 7.5976 |
0.6182 | 44300 | 7.6406 |
0.6196 | 44400 | 7.585 |
0.6210 | 44500 | 7.5722 |
0.6223 | 44600 | 7.6193 |
0.6237 | 44700 | 7.6249 |
0.6251 | 44800 | 7.6208 |
0.6265 | 44900 | 7.6293 |
0.6279 | 45000 | 7.6023 |
0.6293 | 45100 | 7.5996 |
0.6307 | 45200 | 7.5553 |
0.6321 | 45300 | 7.5996 |
0.6335 | 45400 | 7.5994 |
0.6349 | 45500 | 7.6691 |
0.6363 | 45600 | 7.6051 |
0.6377 | 45700 | 7.6589 |
0.6391 | 45800 | 7.6217 |
0.6405 | 45900 | 7.6053 |
0.6419 | 46000 | 7.6082 |
0.6433 | 46100 | 7.5913 |
0.6447 | 46200 | 7.5742 |
0.6461 | 46300 | 7.597 |
0.6475 | 46400 | 7.5759 |
0.6489 | 46500 | 7.5964 |
0.6503 | 46600 | 7.6719 |
0.6517 | 46700 | 7.605 |
0.6530 | 46800 | 7.5705 |
0.6544 | 46900 | 7.6292 |
0.6558 | 47000 | 7.5978 |
0.6572 | 47100 | 7.5525 |
0.6586 | 47200 | 7.5838 |
0.6600 | 47300 | 7.5672 |
0.6614 | 47400 | 7.6041 |
0.6628 | 47500 | 7.6255 |
0.6642 | 47600 | 7.5415 |
0.6656 | 47700 | 7.61 |
0.6670 | 47800 | 7.573 |
0.6684 | 47900 | 7.6413 |
0.6698 | 48000 | 7.6277 |
0.6712 | 48100 | 7.5903 |
0.6726 | 48200 | 7.6542 |
0.6740 | 48300 | 7.5772 |
0.6754 | 48400 | 7.5991 |
0.6768 | 48500 | 7.5853 |
0.6782 | 48600 | 7.5909 |
0.6796 | 48700 | 7.5912 |
0.6810 | 48800 | 7.6052 |
0.6824 | 48900 | 7.632 |
0.6837 | 49000 | 7.5851 |
0.6851 | 49100 | 7.6688 |
0.6865 | 49200 | 7.6091 |
0.6879 | 49300 | 7.5745 |
0.6893 | 49400 | 7.5833 |
0.6907 | 49500 | 7.5777 |
0.6921 | 49600 | 7.5637 |
0.6935 | 49700 | 7.5622 |
0.6949 | 49800 | 7.5633 |
0.6963 | 49900 | 7.6023 |
0.6977 | 50000 | 7.6103 |
0.6991 | 50100 | 7.547 |
0.7005 | 50200 | 7.5907 |
0.7019 | 50300 | 7.5882 |
0.7033 | 50400 | 7.5875 |
0.7047 | 50500 | 7.5909 |
0.7061 | 50600 | 7.6021 |
0.7075 | 50700 | 7.549 |
0.7089 | 50800 | 7.6511 |
0.7103 | 50900 | 7.6606 |
0.7117 | 51000 | 7.5967 |
0.7130 | 51100 | 7.5722 |
0.7144 | 51200 | 7.6129 |
0.7158 | 51300 | 7.5736 |
0.7172 | 51400 | 7.5799 |
0.7186 | 51500 | 7.6209 |
0.7200 | 51600 | 7.595 |
0.7214 | 51700 | 7.5484 |
0.7228 | 51800 | 7.5999 |
0.7242 | 51900 | 7.5638 |
0.7256 | 52000 | 7.5654 |
0.7270 | 52100 | 7.6303 |
0.7284 | 52200 | 7.5485 |
0.7298 | 52300 | 7.676 |
0.7312 | 52400 | 7.6376 |
0.7326 | 52500 | 7.557 |
0.7340 | 52600 | 7.5631 |
0.7354 | 52700 | 7.6637 |
0.7368 | 52800 | 7.588 |
0.7382 | 52900 | 7.5771 |
0.7396 | 53000 | 7.5766 |
0.7410 | 53100 | 7.5731 |
0.7424 | 53200 | 7.508 |
0.7437 | 53300 | 7.6023 |
0.7451 | 53400 | 7.5796 |
0.7465 | 53500 | 7.5593 |
0.7479 | 53600 | 7.5516 |
0.7493 | 53700 | 7.5973 |
0.7507 | 53800 | 7.5868 |
0.7521 | 53900 | 7.623 |
0.7535 | 54000 | 7.5972 |
0.7549 | 54100 | 7.6304 |
0.7563 | 54200 | 7.5927 |
0.7577 | 54300 | 7.5351 |
0.7591 | 54400 | 7.5732 |
0.7605 | 54500 | 7.6676 |
0.7619 | 54600 | 7.6103 |
0.7633 | 54700 | 7.5572 |
0.7647 | 54800 | 7.574 |
0.7661 | 54900 | 7.555 |
0.7675 | 55000 | 7.6347 |
0.7689 | 55100 | 7.5827 |
0.7703 | 55200 | 7.678 |
0.7717 | 55300 | 7.5577 |
0.7731 | 55400 | 7.5606 |
0.7744 | 55500 | 7.5284 |
0.7758 | 55600 | 7.5561 |
0.7772 | 55700 | 7.6569 |
0.7786 | 55800 | 7.5604 |
0.7800 | 55900 | 7.6444 |
0.7814 | 56000 | 7.602 |
0.7828 | 56100 | 7.5532 |
0.7842 | 56200 | 7.5524 |
0.7856 | 56300 | 7.654 |
0.7870 | 56400 | 7.5799 |
0.7884 | 56500 | 7.5609 |
0.7898 | 56600 | 7.5625 |
0.7912 | 56700 | 7.571 |
0.7926 | 56800 | 7.5126 |
0.7940 | 56900 | 7.5644 |
0.7954 | 57000 | 7.5508 |
0.7968 | 57100 | 7.5183 |
0.7982 | 57200 | 7.5749 |
0.7996 | 57300 | 7.5339 |
0.8010 | 57400 | 7.5739 |
0.8024 | 57500 | 7.5492 |
0.8038 | 57600 | 7.5781 |
0.8051 | 57700 | 7.5753 |
0.8065 | 57800 | 7.5485 |
0.8079 | 57900 | 7.5608 |
0.8093 | 58000 | 7.5515 |
0.8107 | 58100 | 7.6011 |
0.8121 | 58200 | 7.6072 |
0.8135 | 58300 | 7.5615 |
0.8149 | 58400 | 7.5583 |
0.8163 | 58500 | 7.5423 |
0.8177 | 58600 | 7.5852 |
0.8191 | 58700 | 7.5612 |
0.8205 | 58800 | 7.5808 |
0.8219 | 58900 | 7.5888 |
0.8233 | 59000 | 7.6449 |
0.8247 | 59100 | 7.6599 |
0.8261 | 59200 | 7.573 |
0.8275 | 59300 | 7.5533 |
0.8289 | 59400 | 7.5423 |
0.8303 | 59500 | 7.5879 |
0.8317 | 59600 | 7.5699 |
0.8331 | 59700 | 7.5792 |
0.8344 | 59800 | 7.5552 |
0.8358 | 59900 | 7.5982 |
0.8372 | 60000 | 7.5984 |
0.8386 | 60100 | 7.5383 |
0.8400 | 60200 | 7.5518 |
0.8414 | 60300 | 7.5587 |
0.8428 | 60400 | 7.5152 |
0.8442 | 60500 | 7.5945 |
0.8456 | 60600 | 7.5674 |
0.8470 | 60700 | 7.5527 |
0.8484 | 60800 | 7.5941 |
0.8498 | 60900 | 7.5964 |
0.8512 | 61000 | 7.5625 |
0.8526 | 61100 | 7.5526 |
0.8540 | 61200 | 7.5592 |
0.8554 | 61300 | 7.5593 |
0.8568 | 61400 | 7.5392 |
0.8582 | 61500 | 7.641 |
0.8596 | 61600 | 7.6258 |
0.8610 | 61700 | 7.6588 |
0.8624 | 61800 | 7.5707 |
0.8638 | 61900 | 7.5171 |
0.8651 | 62000 | 7.6107 |
0.8665 | 62100 | 7.6272 |
0.8679 | 62200 | 7.5549 |
0.8693 | 62300 | 7.5535 |
0.8707 | 62400 | 7.6454 |
0.8721 | 62500 | 7.5498 |
0.8735 | 62600 | 7.5898 |
0.8749 | 62700 | 7.5461 |
0.8763 | 62800 | 7.5611 |
0.8777 | 62900 | 7.6068 |
0.8791 | 63000 | 7.6001 |
0.8805 | 63100 | 7.5407 |
0.8819 | 63200 | 7.5961 |
0.8833 | 63300 | 7.5839 |
0.8847 | 63400 | 7.5426 |
0.8861 | 63500 | 7.6011 |
0.8875 | 63600 | 7.5708 |
0.8889 | 63700 | 7.5964 |
0.8903 | 63800 | 7.5704 |
0.8917 | 63900 | 7.5372 |
0.8931 | 64000 | 7.5835 |
0.8945 | 64100 | 7.5483 |
0.8958 | 64200 | 7.544 |
0.8972 | 64300 | 7.5677 |
0.8986 | 64400 | 7.5636 |
0.9000 | 64500 | 7.5914 |
0.9014 | 64600 | 7.5789 |
0.9028 | 64700 | 7.5666 |
0.9042 | 64800 | 7.5866 |
0.9056 | 64900 | 7.6195 |
0.9070 | 65000 | 7.5388 |
0.9084 | 65100 | 7.5821 |
0.9098 | 65200 | 7.6767 |
0.9112 | 65300 | 7.6625 |
0.9126 | 65400 | 7.5812 |
0.9140 | 65500 | 7.5026 |
0.9154 | 65600 | 7.5524 |
0.9168 | 65700 | 7.5851 |
0.9182 | 65800 | 7.5762 |
0.9196 | 65900 | 7.5466 |
0.9210 | 66000 | 7.6039 |
0.9224 | 66100 | 7.6041 |
0.9238 | 66200 | 7.5805 |
0.9252 | 66300 | 7.6334 |
0.9265 | 66400 | 7.5348 |
0.9279 | 66500 | 7.6065 |
0.9293 | 66600 | 7.5003 |
0.9307 | 66700 | 7.5512 |
0.9321 | 66800 | 7.5404 |
0.9335 | 66900 | 7.6176 |
0.9349 | 67000 | 7.5634 |
0.9363 | 67100 | 7.5786 |
0.9377 | 67200 | 7.6327 |
0.9391 | 67300 | 7.5532 |
0.9405 | 67400 | 7.5362 |
0.9419 | 67500 | 7.5844 |
0.9433 | 67600 | 7.5632 |
0.9447 | 67700 | 7.553 |
0.9461 | 67800 | 7.5422 |
0.9475 | 67900 | 7.5483 |
0.9489 | 68000 | 7.5477 |
0.9503 | 68100 | 7.5423 |
0.9517 | 68200 | 7.5656 |
0.9531 | 68300 | 7.5573 |
0.9545 | 68400 | 7.525 |
0.9558 | 68500 | 7.55 |
0.9572 | 68600 | 7.5341 |
0.9586 | 68700 | 7.5318 |
0.9600 | 68800 | 7.5691 |
0.9614 | 68900 | 7.5793 |
0.9628 | 69000 | 7.5615 |
0.9642 | 69100 | 7.5348 |
0.9656 | 69200 | 7.5384 |
0.9670 | 69300 | 7.5392 |
0.9684 | 69400 | 7.5909 |
0.9698 | 69500 | 7.5587 |
0.9712 | 69600 | 7.5447 |
0.9726 | 69700 | 7.5731 |
0.9740 | 69800 | 7.5767 |
0.9754 | 69900 | 7.6208 |
0.9768 | 70000 | 7.5414 |
0.9782 | 70100 | 7.6061 |
0.9796 | 70200 | 7.6285 |
0.9810 | 70300 | 7.5533 |
0.9824 | 70400 | 7.5552 |
0.9838 | 70500 | 7.5479 |
0.9852 | 70600 | 7.571 |
0.9865 | 70700 | 7.6259 |
0.9879 | 70800 | 7.6366 |
0.9893 | 70900 | 7.5615 |
0.9907 | 71000 | 7.612 |
0.9921 | 71100 | 7.5309 |
0.9935 | 71200 | 7.5122 |
0.9949 | 71300 | 7.5692 |
0.9963 | 71400 | 7.6198 |
0.9977 | 71500 | 7.527 |
0.9991 | 71600 | 7.5496 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 4
Model tree for Remonatef/all-MiniLM-L6-v17-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2