pairs_with_scores_sampled_category_v25.1
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'nightshirt',
'transmissionsystemblobcorewindowsnetimageslarge6143417e77f63a4025280c65951e9758ejpg',
'cuffed jacket',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0015 | 100 | 11.8602 |
0.0029 | 200 | 11.7216 |
0.0044 | 300 | 11.6593 |
0.0058 | 400 | 11.2427 |
0.0073 | 500 | 10.9864 |
0.0087 | 600 | 10.4159 |
0.0102 | 700 | 10.1391 |
0.0116 | 800 | 9.7647 |
0.0131 | 900 | 9.4895 |
0.0145 | 1000 | 9.1788 |
0.0160 | 1100 | 8.9537 |
0.0175 | 1200 | 8.8094 |
0.0189 | 1300 | 8.6597 |
0.0204 | 1400 | 8.6046 |
0.0218 | 1500 | 8.5694 |
0.0233 | 1600 | 8.5332 |
0.0247 | 1700 | 8.5136 |
0.0262 | 1800 | 8.5075 |
0.0276 | 1900 | 8.4926 |
0.0291 | 2000 | 8.481 |
0.0305 | 2100 | 8.4637 |
0.0320 | 2200 | 8.4412 |
0.0335 | 2300 | 8.4357 |
0.0349 | 2400 | 8.4283 |
0.0364 | 2500 | 8.3974 |
0.0378 | 2600 | 8.4075 |
0.0393 | 2700 | 8.3904 |
0.0407 | 2800 | 8.4059 |
0.0422 | 2900 | 8.3853 |
0.0436 | 3000 | 8.3607 |
0.0451 | 3100 | 8.357 |
0.0465 | 3200 | 8.3447 |
0.0480 | 3300 | 8.3308 |
0.0495 | 3400 | 8.3278 |
0.0509 | 3500 | 8.305 |
0.0524 | 3600 | 8.2994 |
0.0538 | 3700 | 8.2947 |
0.0553 | 3800 | 8.2944 |
0.0567 | 3900 | 8.3156 |
0.0582 | 4000 | 8.2708 |
0.0596 | 4100 | 8.2858 |
0.0611 | 4200 | 8.261 |
0.0625 | 4300 | 8.2635 |
0.0640 | 4400 | 8.2564 |
0.0655 | 4500 | 8.2542 |
0.0669 | 4600 | 8.2483 |
0.0684 | 4700 | 8.2497 |
0.0698 | 4800 | 8.2368 |
0.0713 | 4900 | 8.2278 |
0.0727 | 5000 | 8.2014 |
0.0742 | 5100 | 8.2033 |
0.0756 | 5200 | 8.214 |
0.0771 | 5300 | 8.1914 |
0.0786 | 5400 | 8.1918 |
0.0800 | 5500 | 8.1882 |
0.0815 | 5600 | 8.2037 |
0.0829 | 5700 | 8.1668 |
0.0844 | 5800 | 8.1869 |
0.0858 | 5900 | 8.1763 |
0.0873 | 6000 | 8.1653 |
0.0887 | 6100 | 8.1595 |
0.0902 | 6200 | 8.1446 |
0.0916 | 6300 | 8.1601 |
0.0931 | 6400 | 8.1325 |
0.0946 | 6500 | 8.1373 |
0.0960 | 6600 | 8.1387 |
0.0975 | 6700 | 8.131 |
0.0989 | 6800 | 8.1227 |
0.1004 | 6900 | 8.1347 |
0.1018 | 7000 | 8.1263 |
0.1033 | 7100 | 8.1041 |
0.1047 | 7200 | 8.1196 |
0.1062 | 7300 | 8.0965 |
0.1076 | 7400 | 8.105 |
0.1091 | 7500 | 8.084 |
0.1106 | 7600 | 8.0841 |
0.1120 | 7700 | 8.0686 |
0.1135 | 7800 | 8.0898 |
0.1149 | 7900 | 8.1081 |
0.1164 | 8000 | 8.098 |
0.1178 | 8100 | 8.0614 |
0.1193 | 8200 | 8.0525 |
0.1207 | 8300 | 8.0432 |
0.1222 | 8400 | 8.0527 |
0.1236 | 8500 | 8.0269 |
0.1251 | 8600 | 8.0581 |
0.1266 | 8700 | 8.0562 |
0.1280 | 8800 | 8.0189 |
0.1295 | 8900 | 8.0266 |
0.1309 | 9000 | 8.0053 |
0.1324 | 9100 | 8.0308 |
0.1338 | 9200 | 7.9927 |
0.1353 | 9300 | 8.0196 |
0.1367 | 9400 | 8.0113 |
0.1382 | 9500 | 7.9962 |
0.1396 | 9600 | 8.0227 |
0.1411 | 9700 | 8.0201 |
0.1426 | 9800 | 7.9938 |
0.1440 | 9900 | 7.9907 |
0.1455 | 10000 | 7.9705 |
0.1469 | 10100 | 7.9978 |
0.1484 | 10200 | 7.9897 |
0.1498 | 10300 | 7.984 |
0.1513 | 10400 | 7.9899 |
0.1527 | 10500 | 7.9589 |
0.1542 | 10600 | 7.9623 |
0.1556 | 10700 | 7.9792 |
0.1571 | 10800 | 7.9819 |
0.1586 | 10900 | 7.9463 |
0.1600 | 11000 | 7.9572 |
0.1615 | 11100 | 7.9844 |
0.1629 | 11200 | 7.9502 |
0.1644 | 11300 | 7.9678 |
0.1658 | 11400 | 7.941 |
0.1673 | 11500 | 7.9533 |
0.1687 | 11600 | 7.9356 |
0.1702 | 11700 | 7.9397 |
0.1716 | 11800 | 7.951 |
0.1731 | 11900 | 7.928 |
0.1746 | 12000 | 7.9394 |
0.1760 | 12100 | 7.9486 |
0.1775 | 12200 | 7.9371 |
0.1789 | 12300 | 7.9381 |
0.1804 | 12400 | 7.9412 |
0.1818 | 12500 | 7.9484 |
0.1833 | 12600 | 7.913 |
0.1847 | 12700 | 7.9049 |
0.1862 | 12800 | 7.902 |
0.1876 | 12900 | 7.9318 |
0.1891 | 13000 | 7.9247 |
0.1906 | 13100 | 7.9385 |
0.1920 | 13200 | 7.9145 |
0.1935 | 13300 | 7.9085 |
0.1949 | 13400 | 7.9047 |
0.1964 | 13500 | 7.9235 |
0.1978 | 13600 | 7.8917 |
0.1993 | 13700 | 7.8821 |
0.2007 | 13800 | 7.9088 |
0.2022 | 13900 | 7.9222 |
0.2036 | 14000 | 7.9097 |
0.2051 | 14100 | 7.9239 |
0.2066 | 14200 | 7.9257 |
0.2080 | 14300 | 7.8609 |
0.2095 | 14400 | 7.8979 |
0.2109 | 14500 | 7.8715 |
0.2124 | 14600 | 7.8858 |
0.2138 | 14700 | 7.8801 |
0.2153 | 14800 | 7.8843 |
0.2167 | 14900 | 7.8803 |
0.2182 | 15000 | 7.87 |
0.2196 | 15100 | 7.8729 |
0.2211 | 15200 | 7.8776 |
0.2226 | 15300 | 7.8641 |
0.2240 | 15400 | 7.8444 |
0.2255 | 15500 | 7.8474 |
0.2269 | 15600 | 7.8427 |
0.2284 | 15700 | 7.8283 |
0.2298 | 15800 | 7.8693 |
0.2313 | 15900 | 7.8275 |
0.2327 | 16000 | 7.8454 |
0.2342 | 16100 | 7.8655 |
0.2357 | 16200 | 7.8437 |
0.2371 | 16300 | 7.8574 |
0.2386 | 16400 | 7.8375 |
0.2400 | 16500 | 7.8213 |
0.2415 | 16600 | 7.8416 |
0.2429 | 16700 | 7.8572 |
0.2444 | 16800 | 7.8189 |
0.2458 | 16900 | 7.8553 |
0.2473 | 17000 | 7.8437 |
0.2487 | 17100 | 7.8429 |
0.2502 | 17200 | 7.8307 |
0.2517 | 17300 | 7.8619 |
0.2531 | 17400 | 7.8341 |
0.2546 | 17500 | 7.8194 |
0.2560 | 17600 | 7.8229 |
0.2575 | 17700 | 7.8316 |
0.2589 | 17800 | 7.8226 |
0.2604 | 17900 | 7.8359 |
0.2618 | 18000 | 7.8097 |
0.2633 | 18100 | 7.8206 |
0.2647 | 18200 | 7.8225 |
0.2662 | 18300 | 7.842 |
0.2677 | 18400 | 7.812 |
0.2691 | 18500 | 7.832 |
0.2706 | 18600 | 7.7932 |
0.2720 | 18700 | 7.8192 |
0.2735 | 18800 | 7.7994 |
0.2749 | 18900 | 7.8377 |
0.2764 | 19000 | 7.7911 |
0.2778 | 19100 | 7.8073 |
0.2793 | 19200 | 7.8066 |
0.2807 | 19300 | 7.8112 |
0.2822 | 19400 | 7.7903 |
0.2837 | 19500 | 7.8024 |
0.2851 | 19600 | 7.8045 |
0.2866 | 19700 | 7.7898 |
0.2880 | 19800 | 7.8178 |
0.2895 | 19900 | 7.7921 |
0.2909 | 20000 | 7.804 |
0.2924 | 20100 | 7.8012 |
0.2938 | 20200 | 7.7657 |
0.2953 | 20300 | 7.7882 |
0.2967 | 20400 | 7.7769 |
0.2982 | 20500 | 7.7674 |
0.2997 | 20600 | 7.824 |
0.3011 | 20700 | 7.7837 |
0.3026 | 20800 | 7.7727 |
0.3040 | 20900 | 7.7851 |
0.3055 | 21000 | 7.7821 |
0.3069 | 21100 | 7.7811 |
0.3084 | 21200 | 7.7844 |
0.3098 | 21300 | 7.7764 |
0.3113 | 21400 | 7.7723 |
0.3127 | 21500 | 7.7761 |
0.3142 | 21600 | 7.7901 |
0.3157 | 21700 | 7.7512 |
0.3171 | 21800 | 7.7804 |
0.3186 | 21900 | 7.7995 |
0.3200 | 22000 | 7.758 |
0.3215 | 22100 | 7.7482 |
0.3229 | 22200 | 7.7581 |
0.3244 | 22300 | 7.784 |
0.3258 | 22400 | 7.7666 |
0.3273 | 22500 | 7.7252 |
0.3287 | 22600 | 7.7722 |
0.3302 | 22700 | 7.752 |
0.3317 | 22800 | 7.7552 |
0.3331 | 22900 | 7.7523 |
0.3346 | 23000 | 7.7415 |
0.3360 | 23100 | 7.7278 |
0.3375 | 23200 | 7.7799 |
0.3389 | 23300 | 7.7619 |
0.3404 | 23400 | 7.7518 |
0.3418 | 23500 | 7.7593 |
0.3433 | 23600 | 7.7667 |
0.3447 | 23700 | 7.7765 |
0.3462 | 23800 | 7.7532 |
0.3477 | 23900 | 7.7316 |
0.3491 | 24000 | 7.7692 |
0.3506 | 24100 | 7.761 |
0.3520 | 24200 | 7.7848 |
0.3535 | 24300 | 7.7424 |
0.3549 | 24400 | 7.7288 |
0.3564 | 24500 | 7.7187 |
0.3578 | 24600 | 7.7355 |
0.3593 | 24700 | 7.7431 |
0.3607 | 24800 | 7.7402 |
0.3622 | 24900 | 7.7403 |
0.3637 | 25000 | 7.741 |
0.3651 | 25100 | 7.7246 |
0.3666 | 25200 | 7.7434 |
0.3680 | 25300 | 7.7243 |
0.3695 | 25400 | 7.725 |
0.3709 | 25500 | 7.7558 |
0.3724 | 25600 | 7.7186 |
0.3738 | 25700 | 7.7164 |
0.3753 | 25800 | 7.7185 |
0.3767 | 25900 | 7.7509 |
0.3782 | 26000 | 7.7382 |
0.3797 | 26100 | 7.7353 |
0.3811 | 26200 | 7.7349 |
0.3826 | 26300 | 7.7423 |
0.3840 | 26400 | 7.7139 |
0.3855 | 26500 | 7.7368 |
0.3869 | 26600 | 7.71 |
0.3884 | 26700 | 7.7289 |
0.3898 | 26800 | 7.718 |
0.3913 | 26900 | 7.6944 |
0.3928 | 27000 | 7.7078 |
0.3942 | 27100 | 7.6891 |
0.3957 | 27200 | 7.6911 |
0.3971 | 27300 | 7.6984 |
0.3986 | 27400 | 7.7028 |
0.4000 | 27500 | 7.7264 |
0.4015 | 27600 | 7.6954 |
0.4029 | 27700 | 7.7205 |
0.4044 | 27800 | 7.7098 |
0.4058 | 27900 | 7.6819 |
0.4073 | 28000 | 7.7044 |
0.4088 | 28100 | 7.737 |
0.4102 | 28200 | 7.7023 |
0.4117 | 28300 | 7.7074 |
0.4131 | 28400 | 7.7069 |
0.4146 | 28500 | 7.6934 |
0.4160 | 28600 | 7.7025 |
0.4175 | 28700 | 7.6982 |
0.4189 | 28800 | 7.6765 |
0.4204 | 28900 | 7.6995 |
0.4218 | 29000 | 7.6893 |
0.4233 | 29100 | 7.6871 |
0.4248 | 29200 | 7.6998 |
0.4262 | 29300 | 7.715 |
0.4277 | 29400 | 7.6918 |
0.4291 | 29500 | 7.7161 |
0.4306 | 29600 | 7.6882 |
0.4320 | 29700 | 7.6933 |
0.4335 | 29800 | 7.7069 |
0.4349 | 29900 | 7.6688 |
0.4364 | 30000 | 7.7008 |
0.4378 | 30100 | 7.7052 |
0.4393 | 30200 | 7.6717 |
0.4408 | 30300 | 7.658 |
0.4422 | 30400 | 7.6657 |
0.4437 | 30500 | 7.705 |
0.4451 | 30600 | 7.6998 |
0.4466 | 30700 | 7.6554 |
0.4480 | 30800 | 7.6635 |
0.4495 | 30900 | 7.6691 |
0.4509 | 31000 | 7.6684 |
0.4524 | 31100 | 7.6752 |
0.4538 | 31200 | 7.6819 |
0.4553 | 31300 | 7.6552 |
0.4568 | 31400 | 7.653 |
0.4582 | 31500 | 7.6837 |
0.4597 | 31600 | 7.7052 |
0.4611 | 31700 | 7.6829 |
0.4626 | 31800 | 7.673 |
0.4640 | 31900 | 7.663 |
0.4655 | 32000 | 7.6856 |
0.4669 | 32100 | 7.6509 |
0.4684 | 32200 | 7.6927 |
0.4698 | 32300 | 7.6733 |
0.4713 | 32400 | 7.6683 |
0.4728 | 32500 | 7.6534 |
0.4742 | 32600 | 7.6824 |
0.4757 | 32700 | 7.6764 |
0.4771 | 32800 | 7.6644 |
0.4786 | 32900 | 7.6558 |
0.4800 | 33000 | 7.6549 |
0.4815 | 33100 | 7.6619 |
0.4829 | 33200 | 7.6637 |
0.4844 | 33300 | 7.6555 |
0.4858 | 33400 | 7.6713 |
0.4873 | 33500 | 7.664 |
0.4888 | 33600 | 7.6656 |
0.4902 | 33700 | 7.6753 |
0.4917 | 33800 | 7.6734 |
0.4931 | 33900 | 7.6821 |
0.4946 | 34000 | 7.6878 |
0.4960 | 34100 | 7.7055 |
0.4975 | 34200 | 7.6692 |
0.4989 | 34300 | 7.6319 |
0.5004 | 34400 | 7.6731 |
0.5018 | 34500 | 7.6711 |
0.5033 | 34600 | 7.6613 |
0.5048 | 34700 | 7.6558 |
0.5062 | 34800 | 7.6425 |
0.5077 | 34900 | 7.6678 |
0.5091 | 35000 | 7.6879 |
0.5106 | 35100 | 7.6903 |
0.5120 | 35200 | 7.6729 |
0.5135 | 35300 | 7.6648 |
0.5149 | 35400 | 7.6755 |
0.5164 | 35500 | 7.664 |
0.5178 | 35600 | 7.6395 |
0.5193 | 35700 | 7.6526 |
0.5208 | 35800 | 7.6476 |
0.5222 | 35900 | 7.6749 |
0.5237 | 36000 | 7.6631 |
0.5251 | 36100 | 7.6203 |
0.5266 | 36200 | 7.6308 |
0.5280 | 36300 | 7.6642 |
0.5295 | 36400 | 7.635 |
0.5309 | 36500 | 7.6743 |
0.5324 | 36600 | 7.6552 |
0.5338 | 36700 | 7.6723 |
0.5353 | 36800 | 7.6467 |
0.5368 | 36900 | 7.6547 |
0.5382 | 37000 | 7.6143 |
0.5397 | 37100 | 7.6579 |
0.5411 | 37200 | 7.6442 |
0.5426 | 37300 | 7.646 |
0.5440 | 37400 | 7.612 |
0.5455 | 37500 | 7.6048 |
0.5469 | 37600 | 7.6505 |
0.5484 | 37700 | 7.6281 |
0.5499 | 37800 | 7.6104 |
0.5513 | 37900 | 7.6369 |
0.5528 | 38000 | 7.656 |
0.5542 | 38100 | 7.6551 |
0.5557 | 38200 | 7.5997 |
0.5571 | 38300 | 7.6406 |
0.5586 | 38400 | 7.6538 |
0.5600 | 38500 | 7.6134 |
0.5615 | 38600 | 7.625 |
0.5629 | 38700 | 7.6422 |
0.5644 | 38800 | 7.632 |
0.5659 | 38900 | 7.63 |
0.5673 | 39000 | 7.6069 |
0.5688 | 39100 | 7.6307 |
0.5702 | 39200 | 7.6382 |
0.5717 | 39300 | 7.6192 |
0.5731 | 39400 | 7.6329 |
0.5746 | 39500 | 7.6294 |
0.5760 | 39600 | 7.6376 |
0.5775 | 39700 | 7.5998 |
0.5789 | 39800 | 7.6327 |
0.5804 | 39900 | 7.6354 |
0.5819 | 40000 | 7.6837 |
0.5833 | 40100 | 7.629 |
0.5848 | 40200 | 7.61 |
0.5862 | 40300 | 7.6484 |
0.5877 | 40400 | 7.6285 |
0.5891 | 40500 | 7.6222 |
0.5906 | 40600 | 7.5971 |
0.5920 | 40700 | 7.6186 |
0.5935 | 40800 | 7.5981 |
0.5949 | 40900 | 7.6311 |
0.5964 | 41000 | 7.6138 |
0.5979 | 41100 | 7.5906 |
0.5993 | 41200 | 7.6435 |
0.6008 | 41300 | 7.6084 |
0.6022 | 41400 | 7.5943 |
0.6037 | 41500 | 7.6376 |
0.6051 | 41600 | 7.6174 |
0.6066 | 41700 | 7.6027 |
0.6080 | 41800 | 7.6181 |
0.6095 | 41900 | 7.5849 |
0.6109 | 42000 | 7.5979 |
0.6124 | 42100 | 7.6031 |
0.6139 | 42200 | 7.6162 |
0.6153 | 42300 | 7.5856 |
0.6168 | 42400 | 7.6027 |
0.6182 | 42500 | 7.6012 |
0.6197 | 42600 | 7.6118 |
0.6211 | 42700 | 7.5993 |
0.6226 | 42800 | 7.5932 |
0.6240 | 42900 | 7.6122 |
0.6255 | 43000 | 7.583 |
0.6269 | 43100 | 7.5756 |
0.6284 | 43200 | 7.5786 |
0.6299 | 43300 | 7.6117 |
0.6313 | 43400 | 7.5862 |
0.6328 | 43500 | 7.6137 |
0.6342 | 43600 | 7.6618 |
0.6357 | 43700 | 7.6173 |
0.6371 | 43800 | 7.5769 |
0.6386 | 43900 | 7.5763 |
0.6400 | 44000 | 7.5893 |
0.6415 | 44100 | 7.6219 |
0.6429 | 44200 | 7.6047 |
0.6444 | 44300 | 7.6096 |
0.6459 | 44400 | 7.559 |
0.6473 | 44500 | 7.6262 |
0.6488 | 44600 | 7.5978 |
0.6502 | 44700 | 7.5784 |
0.6517 | 44800 | 7.604 |
0.6531 | 44900 | 7.5889 |
0.6546 | 45000 | 7.6344 |
0.6560 | 45100 | 7.576 |
0.6575 | 45200 | 7.6283 |
0.6589 | 45300 | 7.5998 |
0.6604 | 45400 | 7.571 |
0.6619 | 45500 | 7.6018 |
0.6633 | 45600 | 7.5657 |
0.6648 | 45700 | 7.594 |
0.6662 | 45800 | 7.6216 |
0.6677 | 45900 | 7.5748 |
0.6691 | 46000 | 7.632 |
0.6706 | 46100 | 7.6235 |
0.6720 | 46200 | 7.613 |
0.6735 | 46300 | 7.6356 |
0.6749 | 46400 | 7.5962 |
0.6764 | 46500 | 7.6147 |
0.6779 | 46600 | 7.6005 |
0.6793 | 46700 | 7.6105 |
0.6808 | 46800 | 7.6253 |
0.6822 | 46900 | 7.5691 |
0.6837 | 47000 | 7.5765 |
0.6851 | 47100 | 7.5955 |
0.6866 | 47200 | 7.6008 |
0.6880 | 47300 | 7.5861 |
0.6895 | 47400 | 7.5986 |
0.6909 | 47500 | 7.5651 |
0.6924 | 47600 | 7.5944 |
0.6939 | 47700 | 7.5776 |
0.6953 | 47800 | 7.5993 |
0.6968 | 47900 | 7.6055 |
0.6982 | 48000 | 7.6045 |
0.6997 | 48100 | 7.5867 |
0.7011 | 48200 | 7.5839 |
0.7026 | 48300 | 7.6065 |
0.7040 | 48400 | 7.578 |
0.7055 | 48500 | 7.5889 |
0.7070 | 48600 | 7.5872 |
0.7084 | 48700 | 7.604 |
0.7099 | 48800 | 7.5963 |
0.7113 | 48900 | 7.5951 |
0.7128 | 49000 | 7.5475 |
0.7142 | 49100 | 7.5636 |
0.7157 | 49200 | 7.5871 |
0.7171 | 49300 | 7.5919 |
0.7186 | 49400 | 7.5933 |
0.7200 | 49500 | 7.5829 |
0.7215 | 49600 | 7.5916 |
0.7230 | 49700 | 7.594 |
0.7244 | 49800 | 7.6107 |
0.7259 | 49900 | 7.5942 |
0.7273 | 50000 | 7.5985 |
0.7288 | 50100 | 7.5877 |
0.7302 | 50200 | 7.5676 |
0.7317 | 50300 | 7.6106 |
0.7331 | 50400 | 7.5795 |
0.7346 | 50500 | 7.5802 |
0.7360 | 50600 | 7.6148 |
0.7375 | 50700 | 7.5986 |
0.7390 | 50800 | 7.6037 |
0.7404 | 50900 | 7.6099 |
0.7419 | 51000 | 7.5655 |
0.7433 | 51100 | 7.5681 |
0.7448 | 51200 | 7.5756 |
0.7462 | 51300 | 7.5865 |
0.7477 | 51400 | 7.5289 |
0.7491 | 51500 | 7.559 |
0.7506 | 51600 | 7.5807 |
0.7520 | 51700 | 7.6295 |
0.7535 | 51800 | 7.5576 |
0.7550 | 51900 | 7.5506 |
0.7564 | 52000 | 7.5683 |
0.7579 | 52100 | 7.5839 |
0.7593 | 52200 | 7.5811 |
0.7608 | 52300 | 7.5813 |
0.7622 | 52400 | 7.5665 |
0.7637 | 52500 | 7.5707 |
0.7651 | 52600 | 7.5912 |
0.7666 | 52700 | 7.577 |
0.7680 | 52800 | 7.5317 |
0.7695 | 52900 | 7.5919 |
0.7710 | 53000 | 7.554 |
0.7724 | 53100 | 7.6078 |
0.7739 | 53200 | 7.5386 |
0.7753 | 53300 | 7.5686 |
0.7768 | 53400 | 7.5793 |
0.7782 | 53500 | 7.5721 |
0.7797 | 53600 | 7.5385 |
0.7811 | 53700 | 7.5955 |
0.7826 | 53800 | 7.5843 |
0.7840 | 53900 | 7.5854 |
0.7855 | 54000 | 7.5418 |
0.7870 | 54100 | 7.5546 |
0.7884 | 54200 | 7.5476 |
0.7899 | 54300 | 7.5445 |
0.7913 | 54400 | 7.5509 |
0.7928 | 54500 | 7.5683 |
0.7942 | 54600 | 7.5608 |
0.7957 | 54700 | 7.5546 |
0.7971 | 54800 | 7.5501 |
0.7986 | 54900 | 7.5611 |
0.8000 | 55000 | 7.5574 |
0.8015 | 55100 | 7.5608 |
0.8030 | 55200 | 7.5148 |
0.8044 | 55300 | 7.5546 |
0.8059 | 55400 | 7.6024 |
0.8073 | 55500 | 7.5553 |
0.8088 | 55600 | 7.5889 |
0.8102 | 55700 | 7.5914 |
0.8117 | 55800 | 7.5508 |
0.8131 | 55900 | 7.5768 |
0.8146 | 56000 | 7.5507 |
0.8160 | 56100 | 7.5478 |
0.8175 | 56200 | 7.5717 |
0.8190 | 56300 | 7.5889 |
0.8204 | 56400 | 7.5992 |
0.8219 | 56500 | 7.5502 |
0.8233 | 56600 | 7.5449 |
0.8248 | 56700 | 7.5299 |
0.8262 | 56800 | 7.5695 |
0.8277 | 56900 | 7.5512 |
0.8291 | 57000 | 7.5541 |
0.8306 | 57100 | 7.5615 |
0.8320 | 57200 | 7.4957 |
0.8335 | 57300 | 7.5347 |
0.8350 | 57400 | 7.5837 |
0.8364 | 57500 | 7.5441 |
0.8379 | 57600 | 7.5536 |
0.8393 | 57700 | 7.5935 |
0.8408 | 57800 | 7.5702 |
0.8422 | 57900 | 7.5797 |
0.8437 | 58000 | 7.5749 |
0.8451 | 58100 | 7.5805 |
0.8466 | 58200 | 7.563 |
0.8480 | 58300 | 7.5978 |
0.8495 | 58400 | 7.5548 |
0.8510 | 58500 | 7.5726 |
0.8524 | 58600 | 7.5703 |
0.8539 | 58700 | 7.5534 |
0.8553 | 58800 | 7.5141 |
0.8568 | 58900 | 7.5804 |
0.8582 | 59000 | 7.593 |
0.8597 | 59100 | 7.5755 |
0.8611 | 59200 | 7.551 |
0.8626 | 59300 | 7.5507 |
0.8641 | 59400 | 7.5729 |
0.8655 | 59500 | 7.561 |
0.8670 | 59600 | 7.5672 |
0.8684 | 59700 | 7.5319 |
0.8699 | 59800 | 7.5108 |
0.8713 | 59900 | 7.5568 |
0.8728 | 60000 | 7.5188 |
0.8742 | 60100 | 7.5544 |
0.8757 | 60200 | 7.5459 |
0.8771 | 60300 | 7.5412 |
0.8786 | 60400 | 7.5335 |
0.8801 | 60500 | 7.5408 |
0.8815 | 60600 | 7.5704 |
0.8830 | 60700 | 7.5393 |
0.8844 | 60800 | 7.5455 |
0.8859 | 60900 | 7.5546 |
0.8873 | 61000 | 7.5681 |
0.8888 | 61100 | 7.5528 |
0.8902 | 61200 | 7.5816 |
0.8917 | 61300 | 7.5712 |
0.8931 | 61400 | 7.5562 |
0.8946 | 61500 | 7.5257 |
0.8961 | 61600 | 7.5358 |
0.8975 | 61700 | 7.5591 |
0.8990 | 61800 | 7.5432 |
0.9004 | 61900 | 7.516 |
0.9019 | 62000 | 7.553 |
0.9033 | 62100 | 7.5509 |
0.9048 | 62200 | 7.5174 |
0.9062 | 62300 | 7.5811 |
0.9077 | 62400 | 7.5467 |
0.9091 | 62500 | 7.5149 |
0.9106 | 62600 | 7.5709 |
0.9121 | 62700 | 7.5227 |
0.9135 | 62800 | 7.5552 |
0.9150 | 62900 | 7.5362 |
0.9164 | 63000 | 7.5828 |
0.9179 | 63100 | 7.545 |
0.9193 | 63200 | 7.5135 |
0.9208 | 63300 | 7.5505 |
0.9222 | 63400 | 7.5479 |
0.9237 | 63500 | 7.5511 |
0.9251 | 63600 | 7.5632 |
0.9266 | 63700 | 7.5675 |
0.9281 | 63800 | 7.5714 |
0.9295 | 63900 | 7.5368 |
0.9310 | 64000 | 7.5039 |
0.9324 | 64100 | 7.5821 |
0.9339 | 64200 | 7.5618 |
0.9353 | 64300 | 7.5293 |
0.9368 | 64400 | 7.559 |
0.9382 | 64500 | 7.5266 |
0.9397 | 64600 | 7.5697 |
0.9411 | 64700 | 7.5148 |
0.9426 | 64800 | 7.5597 |
0.9441 | 64900 | 7.5181 |
0.9455 | 65000 | 7.5382 |
0.9470 | 65100 | 7.5164 |
0.9484 | 65200 | 7.5812 |
0.9499 | 65300 | 7.5613 |
0.9513 | 65400 | 7.5138 |
0.9528 | 65500 | 7.5606 |
0.9542 | 65600 | 7.5332 |
0.9557 | 65700 | 7.5441 |
0.9571 | 65800 | 7.5422 |
0.9586 | 65900 | 7.5548 |
0.9601 | 66000 | 7.5772 |
0.9615 | 66100 | 7.5536 |
0.9630 | 66200 | 7.5574 |
0.9644 | 66300 | 7.5567 |
0.9659 | 66400 | 7.5331 |
0.9673 | 66500 | 7.5313 |
0.9688 | 66600 | 7.5109 |
0.9702 | 66700 | 7.5411 |
0.9717 | 66800 | 7.5744 |
0.9731 | 66900 | 7.5378 |
0.9746 | 67000 | 7.529 |
0.9761 | 67100 | 7.5418 |
0.9775 | 67200 | 7.5516 |
0.9790 | 67300 | 7.5621 |
0.9804 | 67400 | 7.5186 |
0.9819 | 67500 | 7.5614 |
0.9833 | 67600 | 7.538 |
0.9848 | 67700 | 7.5508 |
0.9862 | 67800 | 7.589 |
0.9877 | 67900 | 7.5203 |
0.9891 | 68000 | 7.536 |
0.9906 | 68100 | 7.5473 |
0.9921 | 68200 | 7.5972 |
0.9935 | 68300 | 7.5323 |
0.9950 | 68400 | 7.5456 |
0.9964 | 68500 | 7.5457 |
0.9979 | 68600 | 7.5337 |
0.9993 | 68700 | 7.5216 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 55