pairs_with_scores_sampled_category_v25.1

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'nightshirt',
    'transmissionsystemblobcorewindowsnetimageslarge6143417e77f63a4025280c65951e9758ejpg',
    'cuffed jacket',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.0015 100 11.8602
0.0029 200 11.7216
0.0044 300 11.6593
0.0058 400 11.2427
0.0073 500 10.9864
0.0087 600 10.4159
0.0102 700 10.1391
0.0116 800 9.7647
0.0131 900 9.4895
0.0145 1000 9.1788
0.0160 1100 8.9537
0.0175 1200 8.8094
0.0189 1300 8.6597
0.0204 1400 8.6046
0.0218 1500 8.5694
0.0233 1600 8.5332
0.0247 1700 8.5136
0.0262 1800 8.5075
0.0276 1900 8.4926
0.0291 2000 8.481
0.0305 2100 8.4637
0.0320 2200 8.4412
0.0335 2300 8.4357
0.0349 2400 8.4283
0.0364 2500 8.3974
0.0378 2600 8.4075
0.0393 2700 8.3904
0.0407 2800 8.4059
0.0422 2900 8.3853
0.0436 3000 8.3607
0.0451 3100 8.357
0.0465 3200 8.3447
0.0480 3300 8.3308
0.0495 3400 8.3278
0.0509 3500 8.305
0.0524 3600 8.2994
0.0538 3700 8.2947
0.0553 3800 8.2944
0.0567 3900 8.3156
0.0582 4000 8.2708
0.0596 4100 8.2858
0.0611 4200 8.261
0.0625 4300 8.2635
0.0640 4400 8.2564
0.0655 4500 8.2542
0.0669 4600 8.2483
0.0684 4700 8.2497
0.0698 4800 8.2368
0.0713 4900 8.2278
0.0727 5000 8.2014
0.0742 5100 8.2033
0.0756 5200 8.214
0.0771 5300 8.1914
0.0786 5400 8.1918
0.0800 5500 8.1882
0.0815 5600 8.2037
0.0829 5700 8.1668
0.0844 5800 8.1869
0.0858 5900 8.1763
0.0873 6000 8.1653
0.0887 6100 8.1595
0.0902 6200 8.1446
0.0916 6300 8.1601
0.0931 6400 8.1325
0.0946 6500 8.1373
0.0960 6600 8.1387
0.0975 6700 8.131
0.0989 6800 8.1227
0.1004 6900 8.1347
0.1018 7000 8.1263
0.1033 7100 8.1041
0.1047 7200 8.1196
0.1062 7300 8.0965
0.1076 7400 8.105
0.1091 7500 8.084
0.1106 7600 8.0841
0.1120 7700 8.0686
0.1135 7800 8.0898
0.1149 7900 8.1081
0.1164 8000 8.098
0.1178 8100 8.0614
0.1193 8200 8.0525
0.1207 8300 8.0432
0.1222 8400 8.0527
0.1236 8500 8.0269
0.1251 8600 8.0581
0.1266 8700 8.0562
0.1280 8800 8.0189
0.1295 8900 8.0266
0.1309 9000 8.0053
0.1324 9100 8.0308
0.1338 9200 7.9927
0.1353 9300 8.0196
0.1367 9400 8.0113
0.1382 9500 7.9962
0.1396 9600 8.0227
0.1411 9700 8.0201
0.1426 9800 7.9938
0.1440 9900 7.9907
0.1455 10000 7.9705
0.1469 10100 7.9978
0.1484 10200 7.9897
0.1498 10300 7.984
0.1513 10400 7.9899
0.1527 10500 7.9589
0.1542 10600 7.9623
0.1556 10700 7.9792
0.1571 10800 7.9819
0.1586 10900 7.9463
0.1600 11000 7.9572
0.1615 11100 7.9844
0.1629 11200 7.9502
0.1644 11300 7.9678
0.1658 11400 7.941
0.1673 11500 7.9533
0.1687 11600 7.9356
0.1702 11700 7.9397
0.1716 11800 7.951
0.1731 11900 7.928
0.1746 12000 7.9394
0.1760 12100 7.9486
0.1775 12200 7.9371
0.1789 12300 7.9381
0.1804 12400 7.9412
0.1818 12500 7.9484
0.1833 12600 7.913
0.1847 12700 7.9049
0.1862 12800 7.902
0.1876 12900 7.9318
0.1891 13000 7.9247
0.1906 13100 7.9385
0.1920 13200 7.9145
0.1935 13300 7.9085
0.1949 13400 7.9047
0.1964 13500 7.9235
0.1978 13600 7.8917
0.1993 13700 7.8821
0.2007 13800 7.9088
0.2022 13900 7.9222
0.2036 14000 7.9097
0.2051 14100 7.9239
0.2066 14200 7.9257
0.2080 14300 7.8609
0.2095 14400 7.8979
0.2109 14500 7.8715
0.2124 14600 7.8858
0.2138 14700 7.8801
0.2153 14800 7.8843
0.2167 14900 7.8803
0.2182 15000 7.87
0.2196 15100 7.8729
0.2211 15200 7.8776
0.2226 15300 7.8641
0.2240 15400 7.8444
0.2255 15500 7.8474
0.2269 15600 7.8427
0.2284 15700 7.8283
0.2298 15800 7.8693
0.2313 15900 7.8275
0.2327 16000 7.8454
0.2342 16100 7.8655
0.2357 16200 7.8437
0.2371 16300 7.8574
0.2386 16400 7.8375
0.2400 16500 7.8213
0.2415 16600 7.8416
0.2429 16700 7.8572
0.2444 16800 7.8189
0.2458 16900 7.8553
0.2473 17000 7.8437
0.2487 17100 7.8429
0.2502 17200 7.8307
0.2517 17300 7.8619
0.2531 17400 7.8341
0.2546 17500 7.8194
0.2560 17600 7.8229
0.2575 17700 7.8316
0.2589 17800 7.8226
0.2604 17900 7.8359
0.2618 18000 7.8097
0.2633 18100 7.8206
0.2647 18200 7.8225
0.2662 18300 7.842
0.2677 18400 7.812
0.2691 18500 7.832
0.2706 18600 7.7932
0.2720 18700 7.8192
0.2735 18800 7.7994
0.2749 18900 7.8377
0.2764 19000 7.7911
0.2778 19100 7.8073
0.2793 19200 7.8066
0.2807 19300 7.8112
0.2822 19400 7.7903
0.2837 19500 7.8024
0.2851 19600 7.8045
0.2866 19700 7.7898
0.2880 19800 7.8178
0.2895 19900 7.7921
0.2909 20000 7.804
0.2924 20100 7.8012
0.2938 20200 7.7657
0.2953 20300 7.7882
0.2967 20400 7.7769
0.2982 20500 7.7674
0.2997 20600 7.824
0.3011 20700 7.7837
0.3026 20800 7.7727
0.3040 20900 7.7851
0.3055 21000 7.7821
0.3069 21100 7.7811
0.3084 21200 7.7844
0.3098 21300 7.7764
0.3113 21400 7.7723
0.3127 21500 7.7761
0.3142 21600 7.7901
0.3157 21700 7.7512
0.3171 21800 7.7804
0.3186 21900 7.7995
0.3200 22000 7.758
0.3215 22100 7.7482
0.3229 22200 7.7581
0.3244 22300 7.784
0.3258 22400 7.7666
0.3273 22500 7.7252
0.3287 22600 7.7722
0.3302 22700 7.752
0.3317 22800 7.7552
0.3331 22900 7.7523
0.3346 23000 7.7415
0.3360 23100 7.7278
0.3375 23200 7.7799
0.3389 23300 7.7619
0.3404 23400 7.7518
0.3418 23500 7.7593
0.3433 23600 7.7667
0.3447 23700 7.7765
0.3462 23800 7.7532
0.3477 23900 7.7316
0.3491 24000 7.7692
0.3506 24100 7.761
0.3520 24200 7.7848
0.3535 24300 7.7424
0.3549 24400 7.7288
0.3564 24500 7.7187
0.3578 24600 7.7355
0.3593 24700 7.7431
0.3607 24800 7.7402
0.3622 24900 7.7403
0.3637 25000 7.741
0.3651 25100 7.7246
0.3666 25200 7.7434
0.3680 25300 7.7243
0.3695 25400 7.725
0.3709 25500 7.7558
0.3724 25600 7.7186
0.3738 25700 7.7164
0.3753 25800 7.7185
0.3767 25900 7.7509
0.3782 26000 7.7382
0.3797 26100 7.7353
0.3811 26200 7.7349
0.3826 26300 7.7423
0.3840 26400 7.7139
0.3855 26500 7.7368
0.3869 26600 7.71
0.3884 26700 7.7289
0.3898 26800 7.718
0.3913 26900 7.6944
0.3928 27000 7.7078
0.3942 27100 7.6891
0.3957 27200 7.6911
0.3971 27300 7.6984
0.3986 27400 7.7028
0.4000 27500 7.7264
0.4015 27600 7.6954
0.4029 27700 7.7205
0.4044 27800 7.7098
0.4058 27900 7.6819
0.4073 28000 7.7044
0.4088 28100 7.737
0.4102 28200 7.7023
0.4117 28300 7.7074
0.4131 28400 7.7069
0.4146 28500 7.6934
0.4160 28600 7.7025
0.4175 28700 7.6982
0.4189 28800 7.6765
0.4204 28900 7.6995
0.4218 29000 7.6893
0.4233 29100 7.6871
0.4248 29200 7.6998
0.4262 29300 7.715
0.4277 29400 7.6918
0.4291 29500 7.7161
0.4306 29600 7.6882
0.4320 29700 7.6933
0.4335 29800 7.7069
0.4349 29900 7.6688
0.4364 30000 7.7008
0.4378 30100 7.7052
0.4393 30200 7.6717
0.4408 30300 7.658
0.4422 30400 7.6657
0.4437 30500 7.705
0.4451 30600 7.6998
0.4466 30700 7.6554
0.4480 30800 7.6635
0.4495 30900 7.6691
0.4509 31000 7.6684
0.4524 31100 7.6752
0.4538 31200 7.6819
0.4553 31300 7.6552
0.4568 31400 7.653
0.4582 31500 7.6837
0.4597 31600 7.7052
0.4611 31700 7.6829
0.4626 31800 7.673
0.4640 31900 7.663
0.4655 32000 7.6856
0.4669 32100 7.6509
0.4684 32200 7.6927
0.4698 32300 7.6733
0.4713 32400 7.6683
0.4728 32500 7.6534
0.4742 32600 7.6824
0.4757 32700 7.6764
0.4771 32800 7.6644
0.4786 32900 7.6558
0.4800 33000 7.6549
0.4815 33100 7.6619
0.4829 33200 7.6637
0.4844 33300 7.6555
0.4858 33400 7.6713
0.4873 33500 7.664
0.4888 33600 7.6656
0.4902 33700 7.6753
0.4917 33800 7.6734
0.4931 33900 7.6821
0.4946 34000 7.6878
0.4960 34100 7.7055
0.4975 34200 7.6692
0.4989 34300 7.6319
0.5004 34400 7.6731
0.5018 34500 7.6711
0.5033 34600 7.6613
0.5048 34700 7.6558
0.5062 34800 7.6425
0.5077 34900 7.6678
0.5091 35000 7.6879
0.5106 35100 7.6903
0.5120 35200 7.6729
0.5135 35300 7.6648
0.5149 35400 7.6755
0.5164 35500 7.664
0.5178 35600 7.6395
0.5193 35700 7.6526
0.5208 35800 7.6476
0.5222 35900 7.6749
0.5237 36000 7.6631
0.5251 36100 7.6203
0.5266 36200 7.6308
0.5280 36300 7.6642
0.5295 36400 7.635
0.5309 36500 7.6743
0.5324 36600 7.6552
0.5338 36700 7.6723
0.5353 36800 7.6467
0.5368 36900 7.6547
0.5382 37000 7.6143
0.5397 37100 7.6579
0.5411 37200 7.6442
0.5426 37300 7.646
0.5440 37400 7.612
0.5455 37500 7.6048
0.5469 37600 7.6505
0.5484 37700 7.6281
0.5499 37800 7.6104
0.5513 37900 7.6369
0.5528 38000 7.656
0.5542 38100 7.6551
0.5557 38200 7.5997
0.5571 38300 7.6406
0.5586 38400 7.6538
0.5600 38500 7.6134
0.5615 38600 7.625
0.5629 38700 7.6422
0.5644 38800 7.632
0.5659 38900 7.63
0.5673 39000 7.6069
0.5688 39100 7.6307
0.5702 39200 7.6382
0.5717 39300 7.6192
0.5731 39400 7.6329
0.5746 39500 7.6294
0.5760 39600 7.6376
0.5775 39700 7.5998
0.5789 39800 7.6327
0.5804 39900 7.6354
0.5819 40000 7.6837
0.5833 40100 7.629
0.5848 40200 7.61
0.5862 40300 7.6484
0.5877 40400 7.6285
0.5891 40500 7.6222
0.5906 40600 7.5971
0.5920 40700 7.6186
0.5935 40800 7.5981
0.5949 40900 7.6311
0.5964 41000 7.6138
0.5979 41100 7.5906
0.5993 41200 7.6435
0.6008 41300 7.6084
0.6022 41400 7.5943
0.6037 41500 7.6376
0.6051 41600 7.6174
0.6066 41700 7.6027
0.6080 41800 7.6181
0.6095 41900 7.5849
0.6109 42000 7.5979
0.6124 42100 7.6031
0.6139 42200 7.6162
0.6153 42300 7.5856
0.6168 42400 7.6027
0.6182 42500 7.6012
0.6197 42600 7.6118
0.6211 42700 7.5993
0.6226 42800 7.5932
0.6240 42900 7.6122
0.6255 43000 7.583
0.6269 43100 7.5756
0.6284 43200 7.5786
0.6299 43300 7.6117
0.6313 43400 7.5862
0.6328 43500 7.6137
0.6342 43600 7.6618
0.6357 43700 7.6173
0.6371 43800 7.5769
0.6386 43900 7.5763
0.6400 44000 7.5893
0.6415 44100 7.6219
0.6429 44200 7.6047
0.6444 44300 7.6096
0.6459 44400 7.559
0.6473 44500 7.6262
0.6488 44600 7.5978
0.6502 44700 7.5784
0.6517 44800 7.604
0.6531 44900 7.5889
0.6546 45000 7.6344
0.6560 45100 7.576
0.6575 45200 7.6283
0.6589 45300 7.5998
0.6604 45400 7.571
0.6619 45500 7.6018
0.6633 45600 7.5657
0.6648 45700 7.594
0.6662 45800 7.6216
0.6677 45900 7.5748
0.6691 46000 7.632
0.6706 46100 7.6235
0.6720 46200 7.613
0.6735 46300 7.6356
0.6749 46400 7.5962
0.6764 46500 7.6147
0.6779 46600 7.6005
0.6793 46700 7.6105
0.6808 46800 7.6253
0.6822 46900 7.5691
0.6837 47000 7.5765
0.6851 47100 7.5955
0.6866 47200 7.6008
0.6880 47300 7.5861
0.6895 47400 7.5986
0.6909 47500 7.5651
0.6924 47600 7.5944
0.6939 47700 7.5776
0.6953 47800 7.5993
0.6968 47900 7.6055
0.6982 48000 7.6045
0.6997 48100 7.5867
0.7011 48200 7.5839
0.7026 48300 7.6065
0.7040 48400 7.578
0.7055 48500 7.5889
0.7070 48600 7.5872
0.7084 48700 7.604
0.7099 48800 7.5963
0.7113 48900 7.5951
0.7128 49000 7.5475
0.7142 49100 7.5636
0.7157 49200 7.5871
0.7171 49300 7.5919
0.7186 49400 7.5933
0.7200 49500 7.5829
0.7215 49600 7.5916
0.7230 49700 7.594
0.7244 49800 7.6107
0.7259 49900 7.5942
0.7273 50000 7.5985
0.7288 50100 7.5877
0.7302 50200 7.5676
0.7317 50300 7.6106
0.7331 50400 7.5795
0.7346 50500 7.5802
0.7360 50600 7.6148
0.7375 50700 7.5986
0.7390 50800 7.6037
0.7404 50900 7.6099
0.7419 51000 7.5655
0.7433 51100 7.5681
0.7448 51200 7.5756
0.7462 51300 7.5865
0.7477 51400 7.5289
0.7491 51500 7.559
0.7506 51600 7.5807
0.7520 51700 7.6295
0.7535 51800 7.5576
0.7550 51900 7.5506
0.7564 52000 7.5683
0.7579 52100 7.5839
0.7593 52200 7.5811
0.7608 52300 7.5813
0.7622 52400 7.5665
0.7637 52500 7.5707
0.7651 52600 7.5912
0.7666 52700 7.577
0.7680 52800 7.5317
0.7695 52900 7.5919
0.7710 53000 7.554
0.7724 53100 7.6078
0.7739 53200 7.5386
0.7753 53300 7.5686
0.7768 53400 7.5793
0.7782 53500 7.5721
0.7797 53600 7.5385
0.7811 53700 7.5955
0.7826 53800 7.5843
0.7840 53900 7.5854
0.7855 54000 7.5418
0.7870 54100 7.5546
0.7884 54200 7.5476
0.7899 54300 7.5445
0.7913 54400 7.5509
0.7928 54500 7.5683
0.7942 54600 7.5608
0.7957 54700 7.5546
0.7971 54800 7.5501
0.7986 54900 7.5611
0.8000 55000 7.5574
0.8015 55100 7.5608
0.8030 55200 7.5148
0.8044 55300 7.5546
0.8059 55400 7.6024
0.8073 55500 7.5553
0.8088 55600 7.5889
0.8102 55700 7.5914
0.8117 55800 7.5508
0.8131 55900 7.5768
0.8146 56000 7.5507
0.8160 56100 7.5478
0.8175 56200 7.5717
0.8190 56300 7.5889
0.8204 56400 7.5992
0.8219 56500 7.5502
0.8233 56600 7.5449
0.8248 56700 7.5299
0.8262 56800 7.5695
0.8277 56900 7.5512
0.8291 57000 7.5541
0.8306 57100 7.5615
0.8320 57200 7.4957
0.8335 57300 7.5347
0.8350 57400 7.5837
0.8364 57500 7.5441
0.8379 57600 7.5536
0.8393 57700 7.5935
0.8408 57800 7.5702
0.8422 57900 7.5797
0.8437 58000 7.5749
0.8451 58100 7.5805
0.8466 58200 7.563
0.8480 58300 7.5978
0.8495 58400 7.5548
0.8510 58500 7.5726
0.8524 58600 7.5703
0.8539 58700 7.5534
0.8553 58800 7.5141
0.8568 58900 7.5804
0.8582 59000 7.593
0.8597 59100 7.5755
0.8611 59200 7.551
0.8626 59300 7.5507
0.8641 59400 7.5729
0.8655 59500 7.561
0.8670 59600 7.5672
0.8684 59700 7.5319
0.8699 59800 7.5108
0.8713 59900 7.5568
0.8728 60000 7.5188
0.8742 60100 7.5544
0.8757 60200 7.5459
0.8771 60300 7.5412
0.8786 60400 7.5335
0.8801 60500 7.5408
0.8815 60600 7.5704
0.8830 60700 7.5393
0.8844 60800 7.5455
0.8859 60900 7.5546
0.8873 61000 7.5681
0.8888 61100 7.5528
0.8902 61200 7.5816
0.8917 61300 7.5712
0.8931 61400 7.5562
0.8946 61500 7.5257
0.8961 61600 7.5358
0.8975 61700 7.5591
0.8990 61800 7.5432
0.9004 61900 7.516
0.9019 62000 7.553
0.9033 62100 7.5509
0.9048 62200 7.5174
0.9062 62300 7.5811
0.9077 62400 7.5467
0.9091 62500 7.5149
0.9106 62600 7.5709
0.9121 62700 7.5227
0.9135 62800 7.5552
0.9150 62900 7.5362
0.9164 63000 7.5828
0.9179 63100 7.545
0.9193 63200 7.5135
0.9208 63300 7.5505
0.9222 63400 7.5479
0.9237 63500 7.5511
0.9251 63600 7.5632
0.9266 63700 7.5675
0.9281 63800 7.5714
0.9295 63900 7.5368
0.9310 64000 7.5039
0.9324 64100 7.5821
0.9339 64200 7.5618
0.9353 64300 7.5293
0.9368 64400 7.559
0.9382 64500 7.5266
0.9397 64600 7.5697
0.9411 64700 7.5148
0.9426 64800 7.5597
0.9441 64900 7.5181
0.9455 65000 7.5382
0.9470 65100 7.5164
0.9484 65200 7.5812
0.9499 65300 7.5613
0.9513 65400 7.5138
0.9528 65500 7.5606
0.9542 65600 7.5332
0.9557 65700 7.5441
0.9571 65800 7.5422
0.9586 65900 7.5548
0.9601 66000 7.5772
0.9615 66100 7.5536
0.9630 66200 7.5574
0.9644 66300 7.5567
0.9659 66400 7.5331
0.9673 66500 7.5313
0.9688 66600 7.5109
0.9702 66700 7.5411
0.9717 66800 7.5744
0.9731 66900 7.5378
0.9746 67000 7.529
0.9761 67100 7.5418
0.9775 67200 7.5516
0.9790 67300 7.5621
0.9804 67400 7.5186
0.9819 67500 7.5614
0.9833 67600 7.538
0.9848 67700 7.5508
0.9862 67800 7.589
0.9877 67900 7.5203
0.9891 68000 7.536
0.9906 68100 7.5473
0.9921 68200 7.5972
0.9935 68300 7.5323
0.9950 68400 7.5456
0.9964 68500 7.5457
0.9979 68600 7.5337
0.9993 68700 7.5216

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
55
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Remonatef/pairs_with_scores_sampled_category_v25.1

Finetuned
(547)
this model
Finetunes
1 model