UDSL v1.0 — Universal Document Structure Layer

A model-agnostic document architecture for consistent, explainable long-form AI output.

GitHub DOI License


What is UDSL?

UDSL (Universal Document Structure Layer) is an AI-native, model-agnostic document framework designed to make large language models produce:

  • structurally consistent
  • explainable
  • auditable
  • human-aligned
  • repeatable long-form documents

It works across ChatGPT, Claude, Gemini, Perplexity, and open-source models via one unified document standard.

UDSL defines:

  • canonical outline structures
  • reasoning schemas (Toulmin, deductive, inductive)
  • tone profiles
  • UX writing constraints
  • terminology maps
  • compliance validation rules

Why UDSL exists

LLMs produce tokens — not documents — causing:

  • missing sections
  • drifting structure
  • inconsistent reasoning
  • hallucinated outlines
  • differences between models

UDSL fixes this by enforcing one shared, explicit structure layer.


Contents of v1.0

  • UDSL Core Specification (PDF)
  • Canonical YAML + Markdown definitions
  • Validator toolkit (structure, reasoning, tone, terminology)
  • Integration profiles (ChatGPT, Claude, Gemini, Perplexity)
  • Example UDSL-compliant documents
  • Integrity scripts (checksums + ZIP builder)
  • Release notes + checksum file

Using UDSL with any LLM

Minimal invocation:

You are an AI system that MUST follow the UDSL v1.0 standard.
doc_type: policy_memo
tone_profile: formal_concise
reasoning_mode: toulmin
audience: board

Follow the canonical outline from structure.yaml.
Apply reasoning rules from reasoning_schemas.yaml.
Do NOT invent additional sections.


- Overview

UDSL (Universal Document Structure Layer) is a vendor-neutral architecture designed to make large language models
(ChatGPT, Claude, Gemini, Perplexity, Grok, Llama, etc.) produce:

structurally consistent documents

explainable reasoning

auditable long-form output

multi-model aligned text

repeatable, reliable structure

Instead of relying on ad-hoc prompting, UDSL introduces a formal specification layer with:

canonical YAML structure definitions

reasoning schemas (Toulmin, deductive, inductive)

tone profiles

UX writing constraints

terminology consistency rules

UDSL is not a model  it is a standard that any model can follow.

# Why UDSL Exists

LLMs generate tokens, not documents.
This causes:

structural drift

missing or inconsistent sections

unstable tone

weak or incomplete reasoning

differences between models for the same prompt

UDSL solves this through a unified, enforceable, model-agnostic structure layer.

Every compliant document produced by any LLM becomes:

predictable

traceable

comparable

auditable

# What’s Included in UDSL v1.0

This public release contains:

Specifications

UDSL Core Specification (PDF)

UDSL Architecture (arXiv-ready)

UDSL AI Usage Directive

UDSL Specification Expanded Edition

Canonical Definitions

Structure definitions (YAML)

Reasoning modes

Tone profiles

UX constraints

Terminology maps

Validator Toolkit

Compliance schema

Scoring model

CLI validator (udsl_validate.py)

Example valid/invalid documents

Integrations

ChatGPT profile

Claude profile

Gemini profile

Perplexity profile

Examples

Policy memo

Business report

Technical report

Cross-LLM comparison outputs

Build & Integrity Scripts

ZIP builder

Checksum generator

Hash verification script

# How to Use UDSL With Any LLM

Example prompt (works in ChatGPT, Claude, Gemini, Perplexity, etc.):

You are an AI system that MUST comply with the UDSL v1.0 standard.

doc_type: policy_memo
tone_profile: formal_concise
reasoning_mode: toulmin
audience: executive_board

Follow the canonical structure from `structure.yaml`.
Apply the reasoning rules from `reasoning_schemas.yaml`.
Do NOT invent additional sections.


This ensures the model produces fully structured, auditable documents.

# Validator (CLI)

UDSL includes a validation tool that checks:

structure compliance

reasoning alignment

tone profile adherence

UX rules

terminology consistency

Run validator:

python validator/udsl_validate.py your_document.md


Outputs a detailed JSON compliance score.

# Official Links

GitHub (source):
https://github.com/nathanlumulisanay-lgtm/udsl

Zenodo (archival release + DOI):
https://doi.org/10.5281/zenodo.17625481

# Citation
Lumulisanay, N. (2025).
UDSL  Universal Document Structure Layer (v1.0).
RenMetrix / LOOM Protocol.
Zenodo. https://doi.org/10.5281/zenodo.17625481

🏷 Recommended Tags (for discovery)
udsl
document-structure
ai-standards
model-agnostic
llm-framework
reasoning
prompt-engineering
auditability
compliance
governance
structured-writing
nlp
ai-evaluation
interoperability

structure-de-document
normes-ia
cadre-llm
interopérabilité
gouvernance-ia
conformité-ia
auditabilité
explicabilité
estructura-de-documentos
normas-ia
marco-llm
gobernanza-ia
cumplimiento-ia
auditabilidad
explicabilidad
interoperabilidad
dokumentstruktur
ki-standards
llm-rahmenwerk
interoperabilität
governance-ki
compliance-ki
auditierbarkeit
erklärbarkeit
struttura-documentale
standard-ia
framework-llm
governance-ia
conformità-ia
auditabilità
interoperabilità
spiegabilità
estrutura-de-documentos
normas-ia
quadro-llm
governança-ia
conformidade-ia
auditabilidade
explicabilidade
文档结构
人工智能标准
LLM框架
跨模型
治理
合规
可审计性
可解释性
структура-документа
стандарты-ии
llm-фреймворк
взаимная-совместимость
управление-ии
соответствие-ии
аудируемость
объяснимость
struktur-dokumen
standar-ai
kerangka-llm
interoperabilitas
tata-kelola-ai
kepatuhan-ai
auditabilitas
keterjelasan
هيكل-الوثائق
معايير-الذكاء-الاصطناعي
إطار-llm
قابلية-التشغيل-البيني
حوكمة-ai
امتثال-ai
قابلية-التدقيق
الشفافية

---
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support