metadata
library_name: peft
base_model: KT-AI/midm-bitext-S-7B-inst-v1
Model Card for Model ID
- KT-AI/midm-bitext-S-7B-inst-v1
Model Details
Model Description
- NSMC μν 리뷰 λ°μ΄ν°μ λνμ¬ KT-AI/midm-bitext-S-7B-inst-v1 λ―ΈμΈνλ.
- μ λ ₯ ν둬ννΈλ₯Ό μ΄μ©νμ¬ λ°μ΄ν°μ μ document(리뷰)κ° κΈμ μ μΈ λ΄μ©μ΄λ©΄ '1'μ λΆμ μ μΈ λ΄μ©μ΄λ©΄ '0'μ μμΈ‘νλλ‘ ν¨.
- train data: nsmc train μμ 2000κ° μν μ΄μ©
- test data: nsmc test μμ 2000κ° μν μ΄μ©
Training Data
'nsmc'
- μμ 2000κ° λ°μ΄ν° μ΄μ©
Training Procedure
- prepare_sample_textμ 리뷰λ₯Ό κΈμ /λΆμ μΌλ‘ νλ¨νλλ‘ μ λ ₯ ν둬ννΈ μμ νμμ.
Training Hyperparameters
- per_device_train_batch_size: 1
- per_device_eval_batch_size: 1
- learning_rate: 1e-4
- gradient_accumulation_steps: 2
- optimizer: paged_adamw_32bit
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_args.logging_steps: 50
- training_args.max_steps : 1000
- trainable params: trainable params: 16,744,448 || all params: 7,034,347,520 || trainable%: 0.23803839591934178
Results
TrainOutput(global_step=1000, training_loss=1.0208648338317872, metrics={'train_runtime': 1128.0266, 'train_samples_per_second': 1.773, 'train_steps_per_second': 0.887, 'total_flos': 3.1051694997504e+16, 'train_loss': 1.0208648338317872, 'epoch': 1.0})
Accruacy
λ―ΈμΈνλ ν λͺ¨λΈμ μ νλ:0.61