|
from functools import partial |
|
import numpy as np |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
tensor = tensor.float() |
|
with torch.no_grad(): |
|
tensor.normal_(mean, std) |
|
valid = (tensor > a) & (tensor < b) |
|
ind = valid.max() |
|
tensor = tensor[ind].uniform_(a, b) |
|
return tensor.half() |
|
|
|
def get_2d_sincos_pos_embed(embed_dim, image_size): |
|
""" |
|
image_size: image_size or (image_height, image_width) |
|
return: |
|
pos_embed: [image_height, image_width, embed_dim] |
|
""" |
|
if isinstance(image_size, int): |
|
grid_h_size, grid_w_size = image_size, image_size |
|
else: |
|
grid_h_size, grid_w_size = image_size[0], image_size[1] |
|
|
|
grid_h = np.arange(grid_h_size, dtype=np.float32) |
|
grid_w = np.arange(grid_w_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=-1) |
|
return emb |
|
|
|
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (H, W) |
|
out: (H, W, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000 ** omega |
|
|
|
out = np.einsum('hw,d->hwd', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=-1) |
|
return emb |
|
|
|
class Resampler(nn.Module): |
|
""" |
|
A 2D perceiver-resampler network with one cross attention layers by |
|
given learnable queries and 2d sincos pos_emb |
|
Outputs: |
|
A tensor with the shape of (batch_size, num_queries, embed_dim) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_queries, |
|
embed_dim, |
|
num_heads, |
|
kv_dim=None, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
adaptive=False, |
|
max_size=(70, 70), |
|
): |
|
super().__init__() |
|
self.num_queries = num_queries |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.adaptive = adaptive |
|
self.max_size = max_size |
|
|
|
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim)) |
|
trunc_normal_(self.query, std=.02) |
|
|
|
if kv_dim is not None and kv_dim != embed_dim: |
|
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False) |
|
else: |
|
self.kv_proj = nn.Identity() |
|
|
|
self.attn = nn.MultiheadAttention(embed_dim, num_heads) |
|
self.ln_q = norm_layer(embed_dim) |
|
self.ln_kv = norm_layer(embed_dim) |
|
|
|
self.ln_post = norm_layer(embed_dim) |
|
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim)) |
|
|
|
self._set_2d_pos_cache(self.max_size) |
|
self.apply(self._init_weights) |
|
|
|
def _set_2d_pos_cache(self, max_size, device='cpu'): |
|
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device) |
|
self.register_buffer("pos_embed", pos_embed, persistent=False) |
|
|
|
def _adjust_pos_cache(self, tgt_sizes, device): |
|
max_h = torch.max(tgt_sizes[:, 0]) |
|
max_w = torch.max(tgt_sizes[:, 1]) |
|
if max_h > self.max_size[0] or max_w > self.max_size[1]: |
|
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])] |
|
self._set_2d_pos_cache(self.max_size, device) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x, tgt_sizes=None): |
|
assert x.shape[0] == tgt_sizes.shape[0] |
|
bs = x.shape[0] |
|
|
|
device = x.device |
|
dtype = x.dtype |
|
|
|
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1] |
|
|
|
self._adjust_pos_cache(tgt_sizes, device=device) |
|
|
|
max_patch_len = torch.max(patch_len) |
|
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device) |
|
|
|
pos_embed = [] |
|
for i in range(bs): |
|
tgt_h, tgt_w = tgt_sizes[i] |
|
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) |
|
key_padding_mask[i, patch_len[i]:] = True |
|
|
|
pos_embed = torch.nn.utils.rnn.pad_sequence( |
|
pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) |
|
|
|
x = self.kv_proj(x) |
|
x = self.ln_kv(x).permute(1, 0, 2) |
|
|
|
q = self.ln_q(self.query) |
|
|
|
out = self.attn( |
|
self._repeat(q, bs), |
|
x + pos_embed, |
|
x, |
|
key_padding_mask=key_padding_mask)[0] |
|
|
|
x = out.permute(1, 0, 2) |
|
|
|
x = self.ln_post(x) |
|
x = x @ self.proj |
|
return x |
|
|
|
def _repeat(self, query, N: int): |
|
return query.unsqueeze(1).repeat(1, N, 1) |