File size: 18,670 Bytes
15ae283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:18963
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/paraphrase-mpnet-base-v2
widget:
- source_sentence: If the comatose man had previously expressed a desire to be euthanized
in such a situation, respecting his autonomy would support euthanasia.
sentences:
- If the comatose man had previously expressed a desire for euthanasia in such circumstances,
there may be a duty to respect his autonomy, which would support the action.
- If the man is believed to be suffering in his comatose state or there is a significant
burden on his family, there may be a duty to alleviate suffering that supports
euthanasia.
- As a living being, the rat may warrant a duty of care from humans, which may include
providing it with appropriate medical treatment or humane euthanasia in case of
suffering.
- source_sentence: Resisting authoritarianism can defend individual freedom and undermine
oppressive regimes.
sentences:
- Resisting authoritarianism can be a means of exercising the right to free speech
and expression, which may be suppressed by the government.
- If retreating serves to protect the lives of soldiers and civilians, then it upholds
the value of the duty to protect.
- Resisting authoritarianism could result in negative consequences for safety and
security if violence is used to resist.
- source_sentence: Saving someone upholds their fundamental right to life, as it prevents
them from experiencing harm or death.
sentences:
- Donating the money to charity has the potential to benefit those in need and can
be seen as fulfilling a duty to improve the well-being of others.
- Saving someone may preserve their freedom and ability to make choices in their
life.
- If saving someone involves protecting their body from injury or harm, their right
to bodily integrity is respected.
- source_sentence: Helping those in need, such as a starving person, promotes a sense
of community and responsibility towards fellow humans.
sentences:
- We have a moral responsibility to treat others with respect and dignity, regardless
of their race. Hanging out with black people allows for the opportunity to demonstrate
this respect.
- A starving person's right to life is at stake, and providing them with food can
help protect this fundamental right.
- Providing aid and resources to someone in need is an expression of the duty to
promote the well-being of others.
- source_sentence: The marriage of Baptiste and Hannah demonstrates their commitment
to sharing their lives and supporting one another.
sentences:
- Helping others may be a moral duty, but using unethical means like cheating goes
against other moral principles.
- If the marriage brings happiness to Baptiste and Hannah, then they are pursuing
their right to happiness.
- By getting married, Baptiste and Hannah take on a duty to care for each other,
both emotionally and materially.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/paraphrase-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) <!-- at revision 0446e4ee4c8cef910c1b1dd164b6276d66bd47c0 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- train
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The marriage of Baptiste and Hannah demonstrates their commitment to sharing their lives and supporting one another.',
'By getting married, Baptiste and Hannah take on a duty to care for each other, both emotionally and materially.',
'If the marriage brings happiness to Baptiste and Hannah, then they are pursuing their right to happiness.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### train
* Dataset: train
* Size: 18,963 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 25.92 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.31 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 28.69 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Saving the group of people from harm by diverting the trolley supports the value of preserving life.</code> | <code>The group of people tied to the tracks have a right to life, which is protected when the trolley is diverted to save them.</code> | <code>Diverting the trolley reduces overall harm by preventing the deaths of many people at the cost of one person's life.</code> |
| <code>The bake sale could be seen as an expression of support for a particular cause, and the right to freely express oneself and associate with others who share the same views is important.</code> | <code>The bake sale might be seen as a form of protest or support for a specific cause, and individuals have the right to engage in peaceful protest or show support.</code> | <code>If the bake sale directly or indirectly promotes religious discrimination, this can infringe on the fundamental right of individuals to be free from discrimination or harm due to their religious beliefs.</code> |
| <code>Children have a right to life, and saving them from danger upholds this right.</code> | <code>Children should be protected from harm, abuse, and danger, and saving them ensures this right is respected.</code> | <code>Children have a right to grow up with access to healthcare, education, and a nurturing environment. Saving them may help secure these rights.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 40,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `per_device_train_batch_size`: 32
- `learning_rate`: 2.1456771788455288e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.03254893834779507
- `fp16`: True
- `dataloader_num_workers`: 4
- `remove_unused_columns`: False
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2.1456771788455288e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.03254893834779507
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: False
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0337 | 20 | 0.2448 |
| 0.0675 | 40 | 0.1918 |
| 0.1012 | 60 | 0.14 |
| 0.1349 | 80 | 0.186 |
| 0.1686 | 100 | 0.1407 |
| 0.2024 | 120 | 0.1672 |
| 0.2361 | 140 | 0.1832 |
| 0.2698 | 160 | 0.116 |
| 0.3035 | 180 | 0.1341 |
| 0.3373 | 200 | 0.2118 |
| 0.3710 | 220 | 0.1274 |
| 0.4047 | 240 | 0.1993 |
| 0.4384 | 260 | 0.1561 |
| 0.4722 | 280 | 0.1517 |
| 0.5059 | 300 | 0.1635 |
| 0.5396 | 320 | 0.1646 |
| 0.5734 | 340 | 0.1337 |
| 0.6071 | 360 | 0.1406 |
| 0.6408 | 380 | 0.1114 |
| 0.6745 | 400 | 0.1314 |
| 0.7083 | 420 | 0.1481 |
| 0.7420 | 440 | 0.1932 |
| 0.7757 | 460 | 0.1568 |
| 0.8094 | 480 | 0.1319 |
| 0.8432 | 500 | 0.1536 |
| 0.8769 | 520 | 0.1462 |
| 0.9106 | 540 | 0.1336 |
| 0.9444 | 560 | 0.1453 |
| 0.9781 | 580 | 0.2005 |
| 1.0118 | 600 | 0.1265 |
| 1.0455 | 620 | 0.0702 |
| 1.0793 | 640 | 0.0739 |
| 1.1130 | 660 | 0.049 |
| 1.1467 | 680 | 0.0613 |
| 1.1804 | 700 | 0.0663 |
| 1.2142 | 720 | 0.0726 |
| 1.2479 | 740 | 0.0822 |
| 1.2816 | 760 | 0.0651 |
| 1.3153 | 780 | 0.0603 |
| 1.3491 | 800 | 0.0468 |
| 1.3828 | 820 | 0.061 |
| 1.4165 | 840 | 0.0891 |
| 1.4503 | 860 | 0.0607 |
| 1.4840 | 880 | 0.0673 |
| 1.5177 | 900 | 0.0728 |
| 1.5514 | 920 | 0.065 |
| 1.5852 | 940 | 0.0824 |
| 1.6189 | 960 | 0.0695 |
| 1.6526 | 980 | 0.0626 |
| 1.6863 | 1000 | 0.0525 |
| 1.7201 | 1020 | 0.0482 |
| 1.7538 | 1040 | 0.0968 |
| 1.7875 | 1060 | 0.0717 |
| 1.8212 | 1080 | 0.0704 |
| 1.8550 | 1100 | 0.0666 |
| 1.8887 | 1120 | 0.0841 |
| 1.9224 | 1140 | 0.0682 |
| 1.9562 | 1160 | 0.0584 |
| 1.9899 | 1180 | 0.0423 |
### Framework Versions
- Python: 3.9.21
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |