File size: 18,670 Bytes
15ae283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:18963
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/paraphrase-mpnet-base-v2
widget:
- source_sentence: If the comatose man had previously expressed a desire to be euthanized
    in such a situation, respecting his autonomy would support euthanasia.
  sentences:
  - If the comatose man had previously expressed a desire for euthanasia in such circumstances,
    there may be a duty to respect his autonomy, which would support the action.
  - If the man is believed to be suffering in his comatose state or there is a significant
    burden on his family, there may be a duty to alleviate suffering that supports
    euthanasia.
  - As a living being, the rat may warrant a duty of care from humans, which may include
    providing it with appropriate medical treatment or humane euthanasia in case of
    suffering.
- source_sentence: Resisting authoritarianism can defend individual freedom and undermine
    oppressive regimes.
  sentences:
  - Resisting authoritarianism can be a means of exercising the right to free speech
    and expression, which may be suppressed by the government.
  - If retreating serves to protect the lives of soldiers and civilians, then it upholds
    the value of the duty to protect.
  - Resisting authoritarianism could result in negative consequences for safety and
    security if violence is used to resist.
- source_sentence: Saving someone upholds their fundamental right to life, as it prevents
    them from experiencing harm or death.
  sentences:
  - Donating the money to charity has the potential to benefit those in need and can
    be seen as fulfilling a duty to improve the well-being of others.
  - Saving someone may preserve their freedom and ability to make choices in their
    life.
  - If saving someone involves protecting their body from injury or harm, their right
    to bodily integrity is respected.
- source_sentence: Helping those in need, such as a starving person, promotes a sense
    of community and responsibility towards fellow humans.
  sentences:
  - We have a moral responsibility to treat others with respect and dignity, regardless
    of their race. Hanging out with black people allows for the opportunity to demonstrate
    this respect.
  - A starving person's right to life is at stake, and providing them with food can
    help protect this fundamental right.
  - Providing aid and resources to someone in need is an expression of the duty to
    promote the well-being of others.
- source_sentence: The marriage of Baptiste and Hannah demonstrates their commitment
    to sharing their lives and supporting one another.
  sentences:
  - Helping others may be a moral duty, but using unethical means like cheating goes
    against other moral principles.
  - If the marriage brings happiness to Baptiste and Hannah, then they are pursuing
    their right to happiness.
  - By getting married, Baptiste and Hannah take on a duty to care for each other,
    both emotionally and materially.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on sentence-transformers/paraphrase-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) <!-- at revision 0446e4ee4c8cef910c1b1dd164b6276d66bd47c0 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - train
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The marriage of Baptiste and Hannah demonstrates their commitment to sharing their lives and supporting one another.',
    'By getting married, Baptiste and Hannah take on a duty to care for each other, both emotionally and materially.',
    'If the marriage brings happiness to Baptiste and Hannah, then they are pursuing their right to happiness.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### train

* Dataset: train
* Size: 18,963 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                          | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 25.92 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.31 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 28.69 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                | positive                                                                                                                                                                     | negative                                                                                                                                                                                                                 |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Saving the group of people from harm by diverting the trolley supports the value of preserving life.</code>                                                                                     | <code>The group of people tied to the tracks have a right to life, which is protected when the trolley is diverted to save them.</code>                                      | <code>Diverting the trolley reduces overall harm by preventing the deaths of many people at the cost of one person's life.</code>                                                                                        |
  | <code>The bake sale could be seen as an expression of support for a particular cause, and the right to freely express oneself and associate with others who share the same views is important.</code> | <code>The bake sale might be seen as a form of protest or support for a specific cause, and individuals have the right to engage in peaceful protest or show support.</code> | <code>If the bake sale directly or indirectly promotes religious discrimination, this can infringe on the fundamental right of individuals to be free from discrimination or harm due to their religious beliefs.</code> |
  | <code>Children have a right to life, and saving them from danger upholds this right.</code>                                                                                                           | <code>Children should be protected from harm, abuse, and danger, and saving them ensures this right is respected.</code>                                                     | <code>Children have a right to grow up with access to healthcare, education, and a nurturing environment. Saving them may help secure these rights.</code>                                                               |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 40,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `overwrite_output_dir`: True
- `per_device_train_batch_size`: 32
- `learning_rate`: 2.1456771788455288e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.03254893834779507
- `fp16`: True
- `dataloader_num_workers`: 4
- `remove_unused_columns`: False

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2.1456771788455288e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.03254893834779507
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: False
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0337 | 20   | 0.2448        |
| 0.0675 | 40   | 0.1918        |
| 0.1012 | 60   | 0.14          |
| 0.1349 | 80   | 0.186         |
| 0.1686 | 100  | 0.1407        |
| 0.2024 | 120  | 0.1672        |
| 0.2361 | 140  | 0.1832        |
| 0.2698 | 160  | 0.116         |
| 0.3035 | 180  | 0.1341        |
| 0.3373 | 200  | 0.2118        |
| 0.3710 | 220  | 0.1274        |
| 0.4047 | 240  | 0.1993        |
| 0.4384 | 260  | 0.1561        |
| 0.4722 | 280  | 0.1517        |
| 0.5059 | 300  | 0.1635        |
| 0.5396 | 320  | 0.1646        |
| 0.5734 | 340  | 0.1337        |
| 0.6071 | 360  | 0.1406        |
| 0.6408 | 380  | 0.1114        |
| 0.6745 | 400  | 0.1314        |
| 0.7083 | 420  | 0.1481        |
| 0.7420 | 440  | 0.1932        |
| 0.7757 | 460  | 0.1568        |
| 0.8094 | 480  | 0.1319        |
| 0.8432 | 500  | 0.1536        |
| 0.8769 | 520  | 0.1462        |
| 0.9106 | 540  | 0.1336        |
| 0.9444 | 560  | 0.1453        |
| 0.9781 | 580  | 0.2005        |
| 1.0118 | 600  | 0.1265        |
| 1.0455 | 620  | 0.0702        |
| 1.0793 | 640  | 0.0739        |
| 1.1130 | 660  | 0.049         |
| 1.1467 | 680  | 0.0613        |
| 1.1804 | 700  | 0.0663        |
| 1.2142 | 720  | 0.0726        |
| 1.2479 | 740  | 0.0822        |
| 1.2816 | 760  | 0.0651        |
| 1.3153 | 780  | 0.0603        |
| 1.3491 | 800  | 0.0468        |
| 1.3828 | 820  | 0.061         |
| 1.4165 | 840  | 0.0891        |
| 1.4503 | 860  | 0.0607        |
| 1.4840 | 880  | 0.0673        |
| 1.5177 | 900  | 0.0728        |
| 1.5514 | 920  | 0.065         |
| 1.5852 | 940  | 0.0824        |
| 1.6189 | 960  | 0.0695        |
| 1.6526 | 980  | 0.0626        |
| 1.6863 | 1000 | 0.0525        |
| 1.7201 | 1020 | 0.0482        |
| 1.7538 | 1040 | 0.0968        |
| 1.7875 | 1060 | 0.0717        |
| 1.8212 | 1080 | 0.0704        |
| 1.8550 | 1100 | 0.0666        |
| 1.8887 | 1120 | 0.0841        |
| 1.9224 | 1140 | 0.0682        |
| 1.9562 | 1160 | 0.0584        |
| 1.9899 | 1180 | 0.0423        |


### Framework Versions
- Python: 3.9.21
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->