YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
llama3.2-3B-Wolof - GGUF
- Model creator: https://huggingface.co/Hawoly18/
- Original model: https://huggingface.co/Hawoly18/llama3.2-3B-Wolof/
Name | Quant method | Size |
---|---|---|
llama3.2-3B-Wolof.Q2_K.gguf | Q2_K | 1.27GB |
llama3.2-3B-Wolof.IQ3_XS.gguf | IQ3_XS | 1.37GB |
llama3.2-3B-Wolof.IQ3_S.gguf | IQ3_S | 1.43GB |
llama3.2-3B-Wolof.Q3_K_S.gguf | Q3_K_S | 1.43GB |
llama3.2-3B-Wolof.IQ3_M.gguf | IQ3_M | 1.49GB |
llama3.2-3B-Wolof.Q3_K.gguf | Q3_K | 1.57GB |
llama3.2-3B-Wolof.Q3_K_M.gguf | Q3_K_M | 1.57GB |
llama3.2-3B-Wolof.Q3_K_L.gguf | Q3_K_L | 1.69GB |
llama3.2-3B-Wolof.IQ4_XS.gguf | IQ4_XS | 1.71GB |
llama3.2-3B-Wolof.Q4_0.gguf | Q4_0 | 1.78GB |
llama3.2-3B-Wolof.IQ4_NL.gguf | IQ4_NL | 1.79GB |
llama3.2-3B-Wolof.Q4_K_S.gguf | Q4_K_S | 1.79GB |
llama3.2-3B-Wolof.Q4_K.gguf | Q4_K | 1.88GB |
llama3.2-3B-Wolof.Q4_K_M.gguf | Q4_K_M | 1.88GB |
llama3.2-3B-Wolof.Q4_1.gguf | Q4_1 | 1.95GB |
llama3.2-3B-Wolof.Q5_0.gguf | Q5_0 | 2.11GB |
llama3.2-3B-Wolof.Q5_K_S.gguf | Q5_K_S | 2.11GB |
llama3.2-3B-Wolof.Q5_K.gguf | Q5_K | 2.16GB |
llama3.2-3B-Wolof.Q5_K_M.gguf | Q5_K_M | 2.16GB |
llama3.2-3B-Wolof.Q5_1.gguf | Q5_1 | 2.27GB |
llama3.2-3B-Wolof.Q6_K.gguf | Q6_K | 2.46GB |
llama3.2-3B-Wolof.Q8_0.gguf | Q8_0 | 3.18GB |
Original model description:
library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - trl - sft - generated_from_trainer model-index: - name: outputs results: []
outputs
This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6534
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4702 | 0.0556 | 25 | 2.5017 |
2.1788 | 0.1111 | 50 | 2.0390 |
1.8193 | 0.1667 | 75 | 1.8122 |
1.5859 | 0.2222 | 100 | 1.6534 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1
Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more quants, at much higher speed, than I would otherwise be able to.
- Downloads last month
- 8
Hardware compatibility
Log In
to view the estimation
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support