YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
Llama3.1-60B - GGUF
- Model creator: https://huggingface.co/allknowingroger/
- Original model: https://huggingface.co/allknowingroger/Llama3.1-60B/
Name | Quant method | Size |
---|---|---|
Llama3.1-60B.Q2_K.gguf | Q2_K | 21.57GB |
Llama3.1-60B.IQ3_XS.gguf | IQ3_XS | 23.96GB |
Llama3.1-60B.IQ3_S.gguf | IQ3_S | 25.28GB |
Llama3.1-60B.Q3_K_S.gguf | Q3_K_S | 25.2GB |
Llama3.1-60B.IQ3_M.gguf | IQ3_M | 26.09GB |
Llama3.1-60B.Q3_K.gguf | Q3_K | 28.0GB |
Llama3.1-60B.Q3_K_M.gguf | Q3_K_M | 28.0GB |
Llama3.1-60B.Q3_K_L.gguf | Q3_K_L | 30.42GB |
Llama3.1-60B.IQ4_XS.gguf | IQ4_XS | 31.33GB |
Llama3.1-60B.Q4_0.gguf | Q4_0 | 32.74GB |
Llama3.1-60B.IQ4_NL.gguf | IQ4_NL | 33.03GB |
Llama3.1-60B.Q4_K_S.gguf | Q4_K_S | 32.96GB |
Llama3.1-60B.Q4_K.gguf | Q4_K | 34.73GB |
Llama3.1-60B.Q4_K_M.gguf | Q4_K_M | 34.73GB |
Llama3.1-60B.Q4_1.gguf | Q4_1 | 36.29GB |
Llama3.1-60B.Q5_0.gguf | Q5_0 | 39.84GB |
Llama3.1-60B.Q5_K_S.gguf | Q5_K_S | 39.84GB |
Llama3.1-60B.Q5_K.gguf | Q5_K | 40.86GB |
Llama3.1-60B.Q5_K_M.gguf | Q5_K_M | 40.86GB |
Llama3.1-60B.Q5_1.gguf | Q5_1 | 43.38GB |
Llama3.1-60B.Q6_K.gguf | Q6_K | 47.38GB |
Llama3.1-60B.Q8_0.gguf | Q8_0 | 61.36GB |
Original model description:
license: apache-2.0 library_name: transformers tags: - mergekit - merge base_model: - mattshumer/Reflection-Llama-3.1-70B model-index: - name: Llama3.1-60B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 18.15 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Llama3.1-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 7.78 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Llama3.1-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Llama3.1-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 5.93 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Llama3.1-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 2.18 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Llama3.1-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 25.67 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Llama3.1-60B name: Open LLM Leaderboard
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the passthrough merge method.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: mattshumer/Reflection-Llama-3.1-70B
layer_range: [0, 39]
- sources:
- model: mattshumer/Reflection-Llama-3.1-70B
layer_range: [8, 39]
merge_method: passthrough
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 9.95 |
IFEval (0-Shot) | 18.15 |
BBH (3-Shot) | 7.78 |
MATH Lvl 5 (4-Shot) | 0.00 |
GPQA (0-shot) | 5.93 |
MuSR (0-shot) | 2.18 |
MMLU-PRO (5-shot) | 25.67 |
- Downloads last month
- 3
Hardware compatibility
Log In
to view the estimation
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support