YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
Bloom-1b7-dialogsum - GGUF
- Model creator: https://huggingface.co/alonzogarbanzo/
- Original model: https://huggingface.co/alonzogarbanzo/Bloom-1b7-dialogsum/
Name | Quant method | Size |
---|---|---|
Bloom-1b7-dialogsum.Q2_K.gguf | Q2_K | 0.98GB |
Bloom-1b7-dialogsum.Q3_K_S.gguf | Q3_K_S | 1.1GB |
Bloom-1b7-dialogsum.Q3_K.gguf | Q3_K | 1.2GB |
Bloom-1b7-dialogsum.Q3_K_M.gguf | Q3_K_M | 1.2GB |
Bloom-1b7-dialogsum.Q3_K_L.gguf | Q3_K_L | 1.25GB |
Bloom-1b7-dialogsum.IQ4_XS.gguf | IQ4_XS | 1.27GB |
Bloom-1b7-dialogsum.Q4_0.gguf | Q4_0 | 1.31GB |
Bloom-1b7-dialogsum.IQ4_NL.gguf | IQ4_NL | 1.31GB |
Bloom-1b7-dialogsum.Q4_K_S.gguf | Q4_K_S | 1.31GB |
Bloom-1b7-dialogsum.Q4_K.gguf | Q4_K | 1.39GB |
Bloom-1b7-dialogsum.Q4_K_M.gguf | Q4_K_M | 1.39GB |
Bloom-1b7-dialogsum.Q4_1.gguf | Q4_1 | 1.41GB |
Bloom-1b7-dialogsum.Q5_0.gguf | Q5_0 | 1.51GB |
Bloom-1b7-dialogsum.Q5_K_S.gguf | Q5_K_S | 1.51GB |
Bloom-1b7-dialogsum.Q5_K.gguf | Q5_K | 1.57GB |
Bloom-1b7-dialogsum.Q5_K_M.gguf | Q5_K_M | 1.57GB |
Bloom-1b7-dialogsum.Q5_1.gguf | Q5_1 | 1.61GB |
Bloom-1b7-dialogsum.Q6_K.gguf | Q6_K | 1.72GB |
Bloom-1b7-dialogsum.Q8_0.gguf | Q8_0 | 2.23GB |
Original model description:
license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-1b7 tags: - generated_from_trainer model-index: - name: Bloom-1b7-dialogsum results: []
Bloom-1b7-dialogsum
This model is a fine-tuned version of bigscience/bloom-1b7 on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Final epoch results: {'loss': 0.024, 'learning_rate': 1.4000000000000001e-06, 'epoch': 5.0}
After finished: {'train_runtime': 582.2106, 'train_samples_per_second': 1.718, 'train_steps_per_second': 0.429, 'train_loss': 0.72078223118186, 'epoch': 5.0}
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
- Downloads last month
- 0
Hardware compatibility
Log In
to view the estimation
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support