YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

tinyllama-1.1b-sum-sft-full_v1.1 - GGUF

Original model description:

license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - martimfasantos/openai-summarize-tldr model-index: - name: tinyllama-1.1b-sum-sft-full_v1.1 results: []

tinyllama-1.1b-sum-sft-full_v1.1

This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on the martimfasantos/openai-summarize-tldr dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1131

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
2.1116 0.9997 1476 2.1131

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
GGUF
Model size
1.1B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support