Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Zebrafish-7B - GGUF

Original model description:

license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit base_model: - liminerity/M7-7b - rwitz/experiment26-truthy-iter-0

Zebrafish-7B

Zebrafish-7B is my first model using the new merge method called Model Stock.

Zebrafish-7B is a merge of the following models using LazyMergekit:

Special thanks to Charles Goddard for the quick implementation!

πŸ† Evaluation

Nous

Model Average AGIEval GPT4All TruthfulQA Bigbench
mlabonne/AlphaMonarch-7B πŸ“„ 62.74 45.37 77.01 78.39 50.2
mlabonne/Zebrafish-7B πŸ“„ 62.41 44.92 77.18 78.25 49.28
mlabonne/Beyonder-4x7B-v3 πŸ“„ 61.91 45.85 76.67 74.98 50.12
mlabonne/NeuralBeagle14-7B πŸ“„ 60.25 46.06 76.77 70.32 47.86
mistralai/Mistral-7B-Instruct-v0.2 πŸ“„ 54.81 38.5 71.64 66.82 42.29

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
  - model: liminerity/M7-7b
  - model: rwitz/experiment26-truthy-iter-0
merge_method: model_stock
base_model: mistralai/Mistral-7B-v0.1
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Zebrafish-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
7
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .