YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

mistral-nemo-gutenberg2-12B-test - GGUF

Original model description:

license: apache-2.0 library_name: transformers base_model: - mistralai/Mistral-Nemo-Instruct-2407 datasets: - nbeerbower/gutenberg2-dpo model-index: - name: mistral-nemo-gutenberg2-12B-test results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 33.85 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.04 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 10.2 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 8.95 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 10.97 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.39 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test name: Open LLM Leaderboard

mistral-nemo-gutenberg2-12B-test

mistralai/Mistral-Nemo-Instruct-2407 finetuned on nbeerbower/gutenberg2-dpo.

This model is a test for the sake of benchmarking my gutenberg2 dataset.

Method

Finetuned using an RTX 3090 for 3 epochs.

Fine-tune Llama 3 with ORPO

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 20.73
IFEval (0-Shot) 33.85
BBH (3-Shot) 32.04
MATH Lvl 5 (4-Shot) 10.20
GPQA (0-shot) 8.95
MuSR (0-shot) 10.97
MMLU-PRO (5-shot) 28.39

Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more quants, at much higher speed, than I would otherwise be able to.

Downloads last month
29
GGUF
Model size
12.2B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support