Quantization made by Richard Erkhov.
thea-rp-3b-25r - GGUF
- Model creator: https://huggingface.co/piotr25691/
- Original model: https://huggingface.co/piotr25691/thea-rp-3b-25r/
Name | Quant method | Size |
---|---|---|
thea-rp-3b-25r.Q2_K.gguf | Q2_K | 1.27GB |
thea-rp-3b-25r.IQ3_XS.gguf | IQ3_XS | 1.38GB |
thea-rp-3b-25r.IQ3_S.gguf | IQ3_S | 1.44GB |
thea-rp-3b-25r.Q3_K_S.gguf | Q3_K_S | 1.44GB |
thea-rp-3b-25r.IQ3_M.gguf | IQ3_M | 1.49GB |
thea-rp-3b-25r.Q3_K.gguf | Q3_K | 1.57GB |
thea-rp-3b-25r.Q3_K_M.gguf | Q3_K_M | 1.57GB |
thea-rp-3b-25r.Q3_K_L.gguf | Q3_K_L | 1.69GB |
thea-rp-3b-25r.IQ4_XS.gguf | IQ4_XS | 1.71GB |
thea-rp-3b-25r.Q4_0.gguf | Q4_0 | 1.79GB |
thea-rp-3b-25r.IQ4_NL.gguf | IQ4_NL | 1.79GB |
thea-rp-3b-25r.Q4_K_S.gguf | Q4_K_S | 1.8GB |
thea-rp-3b-25r.Q4_K.gguf | Q4_K | 1.88GB |
thea-rp-3b-25r.Q4_K_M.gguf | Q4_K_M | 1.88GB |
thea-rp-3b-25r.Q4_1.gguf | Q4_1 | 1.95GB |
thea-rp-3b-25r.Q5_0.gguf | Q5_0 | 2.11GB |
thea-rp-3b-25r.Q5_K_S.gguf | Q5_K_S | 2.11GB |
thea-rp-3b-25r.Q5_K.gguf | Q5_K | 2.16GB |
thea-rp-3b-25r.Q5_K_M.gguf | Q5_K_M | 2.16GB |
thea-rp-3b-25r.Q5_1.gguf | Q5_1 | 2.28GB |
thea-rp-3b-25r.Q6_K.gguf | Q6_K | 2.46GB |
thea-rp-3b-25r.Q8_0.gguf | Q8_0 | 3.19GB |
Original model description:
language: - en license: llama3.2 tags: - text-generation-inference - transformers - llama - trl - sft - reasoning - llama-3 base_model: SicariusSicariiStuff/Impish_LLAMA_3B datasets: - KingNish/reasoning-base-20k - piotr25691/thea-name-overrides model-index: - name: thea-rp-3b-25r results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 65.78 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 20.01 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 11.71 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 3.24 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 5.93 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 22.89 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r name: Open LLM Leaderboard
Model Description
An uncensored roleplay reasoning Llama 3.2 3B model trained on reasoning data.
It may potentially be a highest scoring RP finetune of Llama 3.2.
It has been trained using improved training code, and gives an improved performance. Here is what inference code you should use:
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_REASONING_TOKENS = 1024
MAX_RESPONSE_TOKENS = 512
model_name = "piotr25691/thea-rp-3b-25r"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
{"role": "user", "content": prompt}
]
# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("REASONING: " + reasoning_output)
# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("ANSWER: " + response_output)
- Trained by: Piotr Zalewski
- License: llama3.2
- Finetuned from model: SicariusSicariiStuff/Impish_LLAMA_3B
- Dataset used: KingNish/reasoning-base-20k
This Llama model was trained faster than Unsloth using custom training code.
Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.
Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more quants, at much higher speed, than I would otherwise be able to.
- Downloads last month
- 0
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit