MxbAI Ettin 17M - Contrastive Pretrained
This is a contrastively pretrained version of the Ettin 17M encoder model.
Model Details
- Base Model: jhu-clsp/ettin-encoder-17m
- Model Size: 17M parameters
- Training: Contrastive pretraining on large-scale text pairs
- Sequence Length: 512 tokens
- Pooling: Mean pooling
Usage
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('your-username/mxbai-ettin-17m-pretrained')
model = AutoModel.from_pretrained('your-username/mxbai-ettin-17m-pretrained')
# Encode sentences
sentences = ["Example sentence 1", "Example sentence 2"]
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt', max_length=512)
with torch.no_grad():
outputs = model(**inputs)
# Mean pooling
embeddings = outputs.last_hidden_state.mean(dim=1)
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
Training Details
- Batch size: Large-scale distributed training
- Learning rate: Cosine schedule with warmup
- Loss: CLIP-style contrastive loss
- Hardware: 8x A100 GPUs
- Downloads last month
- 627