RoadToNowhere/QwenLong-L1-32B-abliterated-Q4_K_M-GGUF
This model was converted to GGUF format from huihui-ai/QwenLong-L1-32B-abliterated
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
♾️ Processing Long Documents
For input where the total length (including both input and output) significantly exceeds 32,768 tokens, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the YaRN method.
For llama-server
from llama.cpp
, you can use
llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo RoadToNowhere/QwenLong-L1-32B-abliterated-Q4_K_M-GGUF --hf-file qwenlong-l1-32b-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo RoadToNowhere/QwenLong-L1-32B-abliterated-Q4_K_M-GGUF --hf-file qwenlong-l1-32b-abliterated-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo RoadToNowhere/QwenLong-L1-32B-abliterated-Q4_K_M-GGUF --hf-file qwenlong-l1-32b-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo RoadToNowhere/QwenLong-L1-32B-abliterated-Q4_K_M-GGUF --hf-file qwenlong-l1-32b-abliterated-q4_k_m.gguf -c 2048
- Downloads last month
- 45
4-bit
Model tree for RoadToNowhere/QwenLong-L1-32B-abliterated-Q4_K_M-GGUF
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B