swinv2-tiny-patch4-window8-256-dmae-humeda-DAV70

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3655
  • Accuracy: 0.9029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0983 1.0 15 1.0283 0.5371
0.8777 2.0 30 0.7419 0.7371
0.69 3.0 45 0.4895 0.8
0.4806 4.0 60 0.4128 0.8114
0.436 5.0 75 0.3188 0.8743
0.3499 6.0 90 0.3870 0.8286
0.3754 7.0 105 0.3523 0.8857
0.2954 8.0 120 0.3168 0.8686
0.3075 9.0 135 0.3359 0.8743
0.2405 10.0 150 0.3676 0.8514
0.2716 11.0 165 0.3715 0.8343
0.2414 12.0 180 0.3665 0.8971
0.2116 13.0 195 0.3554 0.88
0.2134 14.0 210 0.4033 0.8686
0.2058 15.0 225 0.4590 0.84
0.1925 16.0 240 0.4088 0.8457
0.2004 17.0 255 0.4399 0.8743
0.1541 18.0 270 0.3550 0.8686
0.2124 19.0 285 0.3603 0.8914
0.1975 20.0 300 0.3655 0.9029
0.15 21.0 315 0.3863 0.8971
0.1796 22.0 330 0.3288 0.9029
0.1307 23.0 345 0.3781 0.8857
0.1721 24.0 360 0.3938 0.9029
0.1161 25.0 375 0.4481 0.88
0.1096 26.0 390 0.4351 0.8686
0.1203 27.0 405 0.4337 0.8686
0.1481 28.0 420 0.5295 0.8457
0.1295 29.0 435 0.4443 0.8857
0.1234 30.0 450 0.4490 0.8914
0.1368 31.0 465 0.5945 0.8629
0.1024 32.0 480 0.5224 0.88
0.1255 33.0 495 0.4385 0.9029
0.1285 34.0 510 0.5272 0.8971
0.1316 35.0 525 0.4936 0.8971
0.1042 36.0 540 0.5399 0.8971
0.1028 37.0 555 0.5199 0.8857
0.0923 38.0 570 0.4813 0.9029
0.1 39.0 585 0.5702 0.8914
0.0943 40.0 600 0.5477 0.8971
0.1135 41.0 615 0.5281 0.8971
0.1021 42.0 630 0.5353 0.8971

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.19.0
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV70

Finetuned
(137)
this model