swinv2-tiny-patch4-window8-256-dmae-humeda-DAV70
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3655
- Accuracy: 0.9029
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0983 | 1.0 | 15 | 1.0283 | 0.5371 |
0.8777 | 2.0 | 30 | 0.7419 | 0.7371 |
0.69 | 3.0 | 45 | 0.4895 | 0.8 |
0.4806 | 4.0 | 60 | 0.4128 | 0.8114 |
0.436 | 5.0 | 75 | 0.3188 | 0.8743 |
0.3499 | 6.0 | 90 | 0.3870 | 0.8286 |
0.3754 | 7.0 | 105 | 0.3523 | 0.8857 |
0.2954 | 8.0 | 120 | 0.3168 | 0.8686 |
0.3075 | 9.0 | 135 | 0.3359 | 0.8743 |
0.2405 | 10.0 | 150 | 0.3676 | 0.8514 |
0.2716 | 11.0 | 165 | 0.3715 | 0.8343 |
0.2414 | 12.0 | 180 | 0.3665 | 0.8971 |
0.2116 | 13.0 | 195 | 0.3554 | 0.88 |
0.2134 | 14.0 | 210 | 0.4033 | 0.8686 |
0.2058 | 15.0 | 225 | 0.4590 | 0.84 |
0.1925 | 16.0 | 240 | 0.4088 | 0.8457 |
0.2004 | 17.0 | 255 | 0.4399 | 0.8743 |
0.1541 | 18.0 | 270 | 0.3550 | 0.8686 |
0.2124 | 19.0 | 285 | 0.3603 | 0.8914 |
0.1975 | 20.0 | 300 | 0.3655 | 0.9029 |
0.15 | 21.0 | 315 | 0.3863 | 0.8971 |
0.1796 | 22.0 | 330 | 0.3288 | 0.9029 |
0.1307 | 23.0 | 345 | 0.3781 | 0.8857 |
0.1721 | 24.0 | 360 | 0.3938 | 0.9029 |
0.1161 | 25.0 | 375 | 0.4481 | 0.88 |
0.1096 | 26.0 | 390 | 0.4351 | 0.8686 |
0.1203 | 27.0 | 405 | 0.4337 | 0.8686 |
0.1481 | 28.0 | 420 | 0.5295 | 0.8457 |
0.1295 | 29.0 | 435 | 0.4443 | 0.8857 |
0.1234 | 30.0 | 450 | 0.4490 | 0.8914 |
0.1368 | 31.0 | 465 | 0.5945 | 0.8629 |
0.1024 | 32.0 | 480 | 0.5224 | 0.88 |
0.1255 | 33.0 | 495 | 0.4385 | 0.9029 |
0.1285 | 34.0 | 510 | 0.5272 | 0.8971 |
0.1316 | 35.0 | 525 | 0.4936 | 0.8971 |
0.1042 | 36.0 | 540 | 0.5399 | 0.8971 |
0.1028 | 37.0 | 555 | 0.5199 | 0.8857 |
0.0923 | 38.0 | 570 | 0.4813 | 0.9029 |
0.1 | 39.0 | 585 | 0.5702 | 0.8914 |
0.0943 | 40.0 | 600 | 0.5477 | 0.8971 |
0.1135 | 41.0 | 615 | 0.5281 | 0.8971 |
0.1021 | 42.0 | 630 | 0.5353 | 0.8971 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.19.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV70
Base model
microsoft/swinv2-tiny-patch4-window8-256