swinv2-tiny-patch4-window8-256-dmae-humeda-DAV71
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5977
- Accuracy: 0.9029
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1246 | 1.0 | 15 | 1.0559 | 0.4171 |
0.8728 | 2.0 | 30 | 0.7460 | 0.6971 |
0.6663 | 3.0 | 45 | 0.4563 | 0.8057 |
0.4632 | 4.0 | 60 | 0.4076 | 0.8286 |
0.4278 | 5.0 | 75 | 0.3670 | 0.84 |
0.361 | 6.0 | 90 | 0.3624 | 0.8457 |
0.3742 | 7.0 | 105 | 0.3504 | 0.8629 |
0.3313 | 8.0 | 120 | 0.2962 | 0.8629 |
0.2977 | 9.0 | 135 | 0.3321 | 0.8686 |
0.2589 | 10.0 | 150 | 0.3425 | 0.8629 |
0.2477 | 11.0 | 165 | 0.3982 | 0.8457 |
0.2187 | 12.0 | 180 | 0.5954 | 0.8514 |
0.2342 | 13.0 | 195 | 0.3745 | 0.8514 |
0.2444 | 14.0 | 210 | 0.5220 | 0.8629 |
0.2067 | 15.0 | 225 | 0.4433 | 0.8457 |
0.1882 | 16.0 | 240 | 0.3937 | 0.8629 |
0.199 | 17.0 | 255 | 0.5103 | 0.8629 |
0.1565 | 18.0 | 270 | 0.3608 | 0.8857 |
0.2068 | 19.0 | 285 | 0.3679 | 0.88 |
0.194 | 20.0 | 300 | 0.5581 | 0.8457 |
0.1654 | 21.0 | 315 | 0.5074 | 0.8686 |
0.1986 | 22.0 | 330 | 0.4395 | 0.88 |
0.1257 | 23.0 | 345 | 0.4293 | 0.8686 |
0.1976 | 24.0 | 360 | 0.4932 | 0.8571 |
0.1563 | 25.0 | 375 | 0.4254 | 0.8857 |
0.0985 | 26.0 | 390 | 0.5097 | 0.8686 |
0.1238 | 27.0 | 405 | 0.7264 | 0.8514 |
0.1577 | 28.0 | 420 | 0.4827 | 0.8571 |
0.1271 | 29.0 | 435 | 0.5305 | 0.8686 |
0.1002 | 30.0 | 450 | 0.5888 | 0.8629 |
0.1268 | 31.0 | 465 | 0.6433 | 0.8571 |
0.1153 | 32.0 | 480 | 0.8394 | 0.8343 |
0.1191 | 33.0 | 495 | 0.7475 | 0.84 |
0.1184 | 34.0 | 510 | 0.4884 | 0.8743 |
0.1332 | 35.0 | 525 | 0.5834 | 0.8857 |
0.1071 | 36.0 | 540 | 0.6279 | 0.8571 |
0.0886 | 37.0 | 555 | 0.6999 | 0.8629 |
0.0744 | 38.0 | 570 | 0.7295 | 0.8686 |
0.1274 | 39.0 | 585 | 0.6137 | 0.8914 |
0.0795 | 40.0 | 600 | 0.5706 | 0.8743 |
0.0962 | 41.0 | 615 | 0.6100 | 0.8857 |
0.094 | 42.0 | 630 | 0.6149 | 0.8743 |
0.0945 | 43.0 | 645 | 0.5689 | 0.88 |
0.0584 | 44.0 | 660 | 0.7019 | 0.8743 |
0.0676 | 45.0 | 675 | 0.6934 | 0.88 |
0.0763 | 46.0 | 690 | 0.6047 | 0.8914 |
0.0762 | 47.0 | 705 | 0.6064 | 0.88 |
0.0696 | 48.0 | 720 | 0.7336 | 0.8686 |
0.0555 | 49.0 | 735 | 0.6599 | 0.8743 |
0.0572 | 50.0 | 750 | 0.5977 | 0.9029 |
0.0648 | 51.0 | 765 | 0.6257 | 0.88 |
0.0705 | 52.0 | 780 | 0.6654 | 0.8857 |
0.0646 | 53.0 | 795 | 0.6813 | 0.8686 |
0.0795 | 54.0 | 810 | 0.6209 | 0.8743 |
0.0828 | 55.0 | 825 | 0.6457 | 0.8743 |
0.0674 | 56.0 | 840 | 0.6521 | 0.88 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.19.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV71
Base model
microsoft/swinv2-tiny-patch4-window8-256