swinv2-tiny-patch4-window8-256-dmae-humeda-DAV71

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5977
  • Accuracy: 0.9029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1246 1.0 15 1.0559 0.4171
0.8728 2.0 30 0.7460 0.6971
0.6663 3.0 45 0.4563 0.8057
0.4632 4.0 60 0.4076 0.8286
0.4278 5.0 75 0.3670 0.84
0.361 6.0 90 0.3624 0.8457
0.3742 7.0 105 0.3504 0.8629
0.3313 8.0 120 0.2962 0.8629
0.2977 9.0 135 0.3321 0.8686
0.2589 10.0 150 0.3425 0.8629
0.2477 11.0 165 0.3982 0.8457
0.2187 12.0 180 0.5954 0.8514
0.2342 13.0 195 0.3745 0.8514
0.2444 14.0 210 0.5220 0.8629
0.2067 15.0 225 0.4433 0.8457
0.1882 16.0 240 0.3937 0.8629
0.199 17.0 255 0.5103 0.8629
0.1565 18.0 270 0.3608 0.8857
0.2068 19.0 285 0.3679 0.88
0.194 20.0 300 0.5581 0.8457
0.1654 21.0 315 0.5074 0.8686
0.1986 22.0 330 0.4395 0.88
0.1257 23.0 345 0.4293 0.8686
0.1976 24.0 360 0.4932 0.8571
0.1563 25.0 375 0.4254 0.8857
0.0985 26.0 390 0.5097 0.8686
0.1238 27.0 405 0.7264 0.8514
0.1577 28.0 420 0.4827 0.8571
0.1271 29.0 435 0.5305 0.8686
0.1002 30.0 450 0.5888 0.8629
0.1268 31.0 465 0.6433 0.8571
0.1153 32.0 480 0.8394 0.8343
0.1191 33.0 495 0.7475 0.84
0.1184 34.0 510 0.4884 0.8743
0.1332 35.0 525 0.5834 0.8857
0.1071 36.0 540 0.6279 0.8571
0.0886 37.0 555 0.6999 0.8629
0.0744 38.0 570 0.7295 0.8686
0.1274 39.0 585 0.6137 0.8914
0.0795 40.0 600 0.5706 0.8743
0.0962 41.0 615 0.6100 0.8857
0.094 42.0 630 0.6149 0.8743
0.0945 43.0 645 0.5689 0.88
0.0584 44.0 660 0.7019 0.8743
0.0676 45.0 675 0.6934 0.88
0.0763 46.0 690 0.6047 0.8914
0.0762 47.0 705 0.6064 0.88
0.0696 48.0 720 0.7336 0.8686
0.0555 49.0 735 0.6599 0.8743
0.0572 50.0 750 0.5977 0.9029
0.0648 51.0 765 0.6257 0.88
0.0705 52.0 780 0.6654 0.8857
0.0646 53.0 795 0.6813 0.8686
0.0795 54.0 810 0.6209 0.8743
0.0828 55.0 825 0.6457 0.8743
0.0674 56.0 840 0.6521 0.88

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.19.0
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV71

Finetuned
(137)
this model