swinv2-tiny-patch4-window8-256-dmae-humeda-DAV72
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7140
- Accuracy: 0.8743
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0851 | 1.0 | 15 | 1.0597 | 0.4857 |
0.9595 | 2.0 | 30 | 0.9427 | 0.64 |
0.8642 | 3.0 | 45 | 0.6913 | 0.7086 |
0.5836 | 4.0 | 60 | 0.5780 | 0.7257 |
0.5395 | 5.0 | 75 | 0.4822 | 0.7829 |
0.4215 | 6.0 | 90 | 0.4077 | 0.8229 |
0.4329 | 7.0 | 105 | 0.4352 | 0.8114 |
0.3695 | 8.0 | 120 | 0.3244 | 0.8743 |
0.3314 | 9.0 | 135 | 0.3186 | 0.8914 |
0.3176 | 10.0 | 150 | 0.3788 | 0.8514 |
0.3368 | 11.0 | 165 | 0.3458 | 0.8629 |
0.2558 | 12.0 | 180 | 0.4196 | 0.8457 |
0.2579 | 13.0 | 195 | 0.3485 | 0.8743 |
0.2413 | 14.0 | 210 | 0.4509 | 0.8629 |
0.2374 | 15.0 | 225 | 0.3904 | 0.8743 |
0.2214 | 16.0 | 240 | 0.3461 | 0.8514 |
0.2189 | 17.0 | 255 | 0.5986 | 0.8229 |
0.2458 | 18.0 | 270 | 0.3360 | 0.8914 |
0.2431 | 19.0 | 285 | 0.3475 | 0.8857 |
0.2136 | 20.0 | 300 | 0.3242 | 0.88 |
0.1871 | 21.0 | 315 | 0.4103 | 0.8857 |
0.1996 | 22.0 | 330 | 0.3606 | 0.9029 |
0.1367 | 23.0 | 345 | 0.4657 | 0.8629 |
0.1963 | 24.0 | 360 | 0.4267 | 0.8743 |
0.1519 | 25.0 | 375 | 0.4322 | 0.8686 |
0.1365 | 26.0 | 390 | 0.4214 | 0.88 |
0.1158 | 27.0 | 405 | 0.4472 | 0.8743 |
0.1621 | 28.0 | 420 | 0.4020 | 0.8743 |
0.1271 | 29.0 | 435 | 0.4054 | 0.8857 |
0.136 | 30.0 | 450 | 0.4286 | 0.9143 |
0.1386 | 31.0 | 465 | 0.5015 | 0.8857 |
0.1153 | 32.0 | 480 | 0.6675 | 0.8629 |
0.1139 | 33.0 | 495 | 0.5458 | 0.8971 |
0.144 | 34.0 | 510 | 0.5303 | 0.88 |
0.1542 | 35.0 | 525 | 0.5164 | 0.8914 |
0.1208 | 36.0 | 540 | 0.5690 | 0.88 |
0.1034 | 37.0 | 555 | 0.7427 | 0.8571 |
0.0889 | 38.0 | 570 | 0.9084 | 0.8286 |
0.1355 | 39.0 | 585 | 0.5977 | 0.8743 |
0.0895 | 40.0 | 600 | 0.5400 | 0.8914 |
0.1072 | 41.0 | 615 | 0.6018 | 0.8743 |
0.1356 | 42.0 | 630 | 0.5493 | 0.8743 |
0.0953 | 43.0 | 645 | 0.5350 | 0.8914 |
0.0781 | 44.0 | 660 | 0.5269 | 0.88 |
0.0854 | 45.0 | 675 | 0.5428 | 0.88 |
0.0983 | 46.0 | 690 | 0.4897 | 0.8857 |
0.0944 | 47.0 | 705 | 0.5177 | 0.8971 |
0.1152 | 48.0 | 720 | 0.6401 | 0.8629 |
0.0608 | 49.0 | 735 | 0.7380 | 0.8629 |
0.0898 | 50.0 | 750 | 0.4922 | 0.8971 |
0.0923 | 51.0 | 765 | 0.5427 | 0.8971 |
0.0743 | 52.0 | 780 | 0.9941 | 0.84 |
0.0753 | 53.0 | 795 | 0.5342 | 0.8857 |
0.0751 | 54.0 | 810 | 0.6452 | 0.88 |
0.1222 | 55.0 | 825 | 0.6297 | 0.8743 |
0.0786 | 56.0 | 840 | 0.6592 | 0.8629 |
0.134 | 57.0 | 855 | 0.6541 | 0.8686 |
0.092 | 58.0 | 870 | 0.6523 | 0.8571 |
0.1036 | 59.0 | 885 | 0.5562 | 0.8971 |
0.0825 | 60.0 | 900 | 0.6117 | 0.8743 |
0.0923 | 61.0 | 915 | 0.5778 | 0.8686 |
0.0909 | 62.0 | 930 | 0.5974 | 0.8686 |
0.0536 | 63.0 | 945 | 0.7557 | 0.8514 |
0.0572 | 64.0 | 960 | 0.6255 | 0.8857 |
0.0824 | 65.0 | 975 | 0.6768 | 0.8686 |
0.0773 | 66.0 | 990 | 0.5942 | 0.9029 |
0.0495 | 67.0 | 1005 | 0.7902 | 0.8571 |
0.0649 | 68.0 | 1020 | 0.6097 | 0.8914 |
0.0852 | 69.0 | 1035 | 0.6614 | 0.8914 |
0.0634 | 70.0 | 1050 | 0.6604 | 0.8914 |
0.0774 | 71.0 | 1065 | 0.7848 | 0.8514 |
0.0803 | 72.0 | 1080 | 0.6424 | 0.8914 |
0.0645 | 73.0 | 1095 | 0.7508 | 0.8857 |
0.0483 | 74.0 | 1110 | 0.7523 | 0.8629 |
0.0586 | 75.0 | 1125 | 0.8278 | 0.8629 |
0.1 | 76.0 | 1140 | 0.7503 | 0.8686 |
0.0434 | 77.0 | 1155 | 0.7820 | 0.8743 |
0.0792 | 78.0 | 1170 | 0.7016 | 0.88 |
0.055 | 79.0 | 1185 | 0.8635 | 0.8571 |
0.0666 | 80.0 | 1200 | 0.7208 | 0.8686 |
0.0563 | 81.0 | 1215 | 0.7606 | 0.8686 |
0.0535 | 82.0 | 1230 | 0.7329 | 0.88 |
0.0499 | 83.0 | 1245 | 0.7253 | 0.88 |
0.0418 | 84.0 | 1260 | 0.7429 | 0.8686 |
0.0736 | 85.0 | 1275 | 0.7621 | 0.8743 |
0.0593 | 86.0 | 1290 | 0.7970 | 0.8571 |
0.0658 | 87.0 | 1305 | 0.7211 | 0.8686 |
0.0531 | 88.0 | 1320 | 0.7420 | 0.8686 |
0.0604 | 89.0 | 1335 | 0.7151 | 0.8743 |
0.0661 | 90.0 | 1350 | 0.6881 | 0.8857 |
0.058 | 91.0 | 1365 | 0.7139 | 0.8686 |
0.0436 | 92.0 | 1380 | 0.7260 | 0.8686 |
0.0733 | 93.0 | 1395 | 0.7150 | 0.8743 |
0.0501 | 93.3390 | 1400 | 0.7140 | 0.8743 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.19.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV72
Base model
microsoft/swinv2-tiny-patch4-window8-256