swinv2-tiny-patch4-window8-256-dmae-humeda-DAV73

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3467
  • Accuracy: 0.8914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1143 1.0 15 1.0550 0.5886
0.9057 2.0 30 0.7895 0.7314
0.7128 3.0 45 0.5484 0.76
0.491 4.0 60 0.4717 0.7829
0.4667 5.0 75 0.3817 0.8457
0.39 6.0 90 0.3647 0.88
0.3975 7.0 105 0.3604 0.8571
0.3496 8.0 120 0.3397 0.8457
0.3546 9.0 135 0.3968 0.84
0.2798 10.0 150 0.3983 0.8571
0.2813 11.0 165 0.3591 0.8571
0.2178 12.0 180 0.4332 0.8571
0.234 13.0 195 0.3892 0.8686
0.2539 14.0 210 0.3944 0.8743
0.2147 15.0 225 0.5366 0.8286
0.2045 16.0 240 0.3467 0.8914
0.1826 17.0 255 0.4077 0.8629
0.1703 18.0 270 0.4043 0.8743
0.1928 19.0 285 0.4470 0.88
0.1853 20.0 300 0.4742 0.8857
0.1503 21.0 315 0.5047 0.8743
0.1692 22.0 330 0.4166 0.8686
0.1436 23.0 345 0.4770 0.8686
0.1715 24.0 360 0.4240 0.8514
0.1449 25.0 375 0.4297 0.8743
0.1051 26.0 390 0.5423 0.8743
0.1055 27.0 405 0.5705 0.8743
0.1407 28.0 420 0.5883 0.8743
0.1463 29.0 435 0.4944 0.8857
0.1413 30.0 450 0.5196 0.8914
0.1521 31.0 465 0.6213 0.8571
0.1318 32.0 480 0.7071 0.84
0.1357 33.0 495 0.5737 0.8743
0.1182 34.0 510 0.5457 0.88
0.1382 35.0 525 0.5622 0.8743
0.1108 36.0 540 0.5403 0.88
0.0948 37.0 555 0.6038 0.8629
0.0964 38.0 570 0.6299 0.8743
0.1035 39.0 585 0.5474 0.8857
0.0892 40.0 600 0.5423 0.8914
0.1121 41.0 615 0.5783 0.8686
0.1119 42.0 630 0.6223 0.8743
0.1103 43.0 645 0.6355 0.88
0.0934 44.0 660 0.5847 0.88
0.0861 45.0 675 0.6008 0.88
0.0933 46.0 690 0.6066 0.88
0.0909 46.6780 700 0.6084 0.88

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.19.0
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV73

Finetuned
(137)
this model