swinv2-tiny-patch4-window8-256-dmae-humeda-DAV73
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3467
- Accuracy: 0.8914
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1143 | 1.0 | 15 | 1.0550 | 0.5886 |
0.9057 | 2.0 | 30 | 0.7895 | 0.7314 |
0.7128 | 3.0 | 45 | 0.5484 | 0.76 |
0.491 | 4.0 | 60 | 0.4717 | 0.7829 |
0.4667 | 5.0 | 75 | 0.3817 | 0.8457 |
0.39 | 6.0 | 90 | 0.3647 | 0.88 |
0.3975 | 7.0 | 105 | 0.3604 | 0.8571 |
0.3496 | 8.0 | 120 | 0.3397 | 0.8457 |
0.3546 | 9.0 | 135 | 0.3968 | 0.84 |
0.2798 | 10.0 | 150 | 0.3983 | 0.8571 |
0.2813 | 11.0 | 165 | 0.3591 | 0.8571 |
0.2178 | 12.0 | 180 | 0.4332 | 0.8571 |
0.234 | 13.0 | 195 | 0.3892 | 0.8686 |
0.2539 | 14.0 | 210 | 0.3944 | 0.8743 |
0.2147 | 15.0 | 225 | 0.5366 | 0.8286 |
0.2045 | 16.0 | 240 | 0.3467 | 0.8914 |
0.1826 | 17.0 | 255 | 0.4077 | 0.8629 |
0.1703 | 18.0 | 270 | 0.4043 | 0.8743 |
0.1928 | 19.0 | 285 | 0.4470 | 0.88 |
0.1853 | 20.0 | 300 | 0.4742 | 0.8857 |
0.1503 | 21.0 | 315 | 0.5047 | 0.8743 |
0.1692 | 22.0 | 330 | 0.4166 | 0.8686 |
0.1436 | 23.0 | 345 | 0.4770 | 0.8686 |
0.1715 | 24.0 | 360 | 0.4240 | 0.8514 |
0.1449 | 25.0 | 375 | 0.4297 | 0.8743 |
0.1051 | 26.0 | 390 | 0.5423 | 0.8743 |
0.1055 | 27.0 | 405 | 0.5705 | 0.8743 |
0.1407 | 28.0 | 420 | 0.5883 | 0.8743 |
0.1463 | 29.0 | 435 | 0.4944 | 0.8857 |
0.1413 | 30.0 | 450 | 0.5196 | 0.8914 |
0.1521 | 31.0 | 465 | 0.6213 | 0.8571 |
0.1318 | 32.0 | 480 | 0.7071 | 0.84 |
0.1357 | 33.0 | 495 | 0.5737 | 0.8743 |
0.1182 | 34.0 | 510 | 0.5457 | 0.88 |
0.1382 | 35.0 | 525 | 0.5622 | 0.8743 |
0.1108 | 36.0 | 540 | 0.5403 | 0.88 |
0.0948 | 37.0 | 555 | 0.6038 | 0.8629 |
0.0964 | 38.0 | 570 | 0.6299 | 0.8743 |
0.1035 | 39.0 | 585 | 0.5474 | 0.8857 |
0.0892 | 40.0 | 600 | 0.5423 | 0.8914 |
0.1121 | 41.0 | 615 | 0.5783 | 0.8686 |
0.1119 | 42.0 | 630 | 0.6223 | 0.8743 |
0.1103 | 43.0 | 645 | 0.6355 | 0.88 |
0.0934 | 44.0 | 660 | 0.5847 | 0.88 |
0.0861 | 45.0 | 675 | 0.6008 | 0.88 |
0.0933 | 46.0 | 690 | 0.6066 | 0.88 |
0.0909 | 46.6780 | 700 | 0.6084 | 0.88 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.19.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV73
Base model
microsoft/swinv2-tiny-patch4-window8-256