swinv2-tiny-patch4-window8-256-dmae-humeda-DAV74

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3840
  • Accuracy: 0.9314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1566 1.0 15 1.1332 0.2286
1.0369 2.0 30 0.9972 0.6171
0.9264 3.0 45 0.6970 0.7714
0.629 4.0 60 0.4858 0.8286
0.5428 5.0 75 0.4445 0.8171
0.4508 6.0 90 0.3967 0.8457
0.4188 7.0 105 0.3711 0.8286
0.3688 8.0 120 0.3448 0.8629
0.3503 9.0 135 0.3299 0.8743
0.2885 10.0 150 0.2780 0.8971
0.2582 11.0 165 0.3197 0.8686
0.3041 12.0 180 0.4322 0.8514
0.2957 13.0 195 0.4167 0.84
0.2821 14.0 210 0.4550 0.84
0.2713 15.0 225 0.4461 0.8343
0.2402 16.0 240 0.3447 0.8971
0.1729 17.0 255 0.3471 0.8914
0.1773 18.0 270 0.3235 0.8914
0.155 19.0 285 0.3583 0.8857
0.1867 20.0 300 0.3917 0.88
0.159 21.0 315 0.3539 0.8743
0.1498 22.0 330 0.3438 0.8629
0.1585 23.0 345 0.3092 0.8914
0.1655 24.0 360 0.2937 0.9029
0.1191 25.0 375 0.3470 0.8971
0.1756 26.0 390 0.3520 0.8857
0.1467 27.0 405 0.3552 0.88
0.1788 28.0 420 0.3994 0.8914
0.108 29.0 435 0.3685 0.9143
0.1359 30.0 450 0.3831 0.9086
0.0982 31.0 465 0.4162 0.8971
0.1154 32.0 480 0.3634 0.9086
0.0959 33.0 495 0.3828 0.8914
0.1136 34.0 510 0.4778 0.88
0.1184 35.0 525 0.3773 0.8857
0.0858 36.0 540 0.3628 0.8971
0.0958 37.0 555 0.4379 0.8857
0.0891 38.0 570 0.3993 0.8857
0.1132 39.0 585 0.3931 0.8857
0.093 40.0 600 0.3840 0.9314
0.094 41.0 615 0.3870 0.9029
0.0938 42.0 630 0.4061 0.8914
0.1024 43.0 645 0.5408 0.8571
0.0835 44.0 660 0.3230 0.9086
0.0795 45.0 675 0.3599 0.9086
0.053 46.0 690 0.4675 0.8686
0.0673 47.0 705 0.4926 0.8857
0.0888 48.0 720 0.4276 0.8971
0.0539 49.0 735 0.5204 0.8686
0.0662 50.0 750 0.4685 0.9143
0.0738 51.0 765 0.3824 0.9143
0.0459 52.0 780 0.4200 0.9143
0.0651 53.0 795 0.4323 0.9086
0.0744 54.0 810 0.4256 0.9086
0.0499 55.0 825 0.4435 0.9143
0.076 56.0 840 0.4884 0.9086
0.0689 57.0 855 0.4900 0.9029
0.0899 58.0 870 0.5848 0.8971
0.054 59.0 885 0.5400 0.9143
0.0524 60.0 900 0.5701 0.8914
0.0532 61.0 915 0.5269 0.9029
0.0596 62.0 930 0.5223 0.88
0.0814 63.0 945 0.5199 0.8914
0.0899 64.0 960 0.4566 0.9143
0.0649 65.0 975 0.4577 0.92
0.0508 66.0 990 0.4655 0.92
0.0529 67.0 1005 0.4868 0.9029
0.0707 68.0 1020 0.4883 0.9029
0.0603 69.0 1035 0.5059 0.9029
0.0776 70.0 1050 0.5878 0.8857
0.0747 71.0 1065 0.4694 0.92
0.0681 72.0 1080 0.5228 0.8857
0.0357 73.0 1095 0.5152 0.8857
0.049 74.0 1110 0.5197 0.9086
0.0335 75.0 1125 0.5028 0.9143
0.0523 76.0 1140 0.6165 0.8857
0.0258 77.0 1155 0.5491 0.8971
0.0398 78.0 1170 0.5218 0.8971
0.0408 79.0 1185 0.6784 0.8743
0.0606 80.0 1200 0.4997 0.9086
0.062 81.0 1215 0.5853 0.8857
0.0485 82.0 1230 0.5230 0.9086
0.0337 83.0 1245 0.5579 0.8971
0.0474 84.0 1260 0.5233 0.8971
0.0542 85.0 1275 0.5082 0.9143
0.0512 86.0 1290 0.5149 0.9029
0.0497 87.0 1305 0.5065 0.8971
0.0317 88.0 1320 0.4929 0.9143
0.0507 89.0 1335 0.5252 0.9143
0.0229 90.0 1350 0.5545 0.8914
0.0248 91.0 1365 0.5472 0.8914
0.0499 92.0 1380 0.5360 0.8971
0.0241 93.0 1395 0.5291 0.8971
0.0458 94.0 1410 0.5110 0.9029
0.0304 95.0 1425 0.5070 0.9029
0.1043 96.0 1440 0.5084 0.9086
0.0454 97.0 1455 0.5128 0.9086
0.0474 98.0 1470 0.5270 0.8971
0.0325 99.0 1485 0.5307 0.8971
0.0273 100.0 1500 0.5334 0.8971

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.19.0
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV74

Finetuned
(137)
this model