swinv2-tiny-patch4-window8-256-dmae-humeda-DAV74
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3840
- Accuracy: 0.9314
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1566 | 1.0 | 15 | 1.1332 | 0.2286 |
1.0369 | 2.0 | 30 | 0.9972 | 0.6171 |
0.9264 | 3.0 | 45 | 0.6970 | 0.7714 |
0.629 | 4.0 | 60 | 0.4858 | 0.8286 |
0.5428 | 5.0 | 75 | 0.4445 | 0.8171 |
0.4508 | 6.0 | 90 | 0.3967 | 0.8457 |
0.4188 | 7.0 | 105 | 0.3711 | 0.8286 |
0.3688 | 8.0 | 120 | 0.3448 | 0.8629 |
0.3503 | 9.0 | 135 | 0.3299 | 0.8743 |
0.2885 | 10.0 | 150 | 0.2780 | 0.8971 |
0.2582 | 11.0 | 165 | 0.3197 | 0.8686 |
0.3041 | 12.0 | 180 | 0.4322 | 0.8514 |
0.2957 | 13.0 | 195 | 0.4167 | 0.84 |
0.2821 | 14.0 | 210 | 0.4550 | 0.84 |
0.2713 | 15.0 | 225 | 0.4461 | 0.8343 |
0.2402 | 16.0 | 240 | 0.3447 | 0.8971 |
0.1729 | 17.0 | 255 | 0.3471 | 0.8914 |
0.1773 | 18.0 | 270 | 0.3235 | 0.8914 |
0.155 | 19.0 | 285 | 0.3583 | 0.8857 |
0.1867 | 20.0 | 300 | 0.3917 | 0.88 |
0.159 | 21.0 | 315 | 0.3539 | 0.8743 |
0.1498 | 22.0 | 330 | 0.3438 | 0.8629 |
0.1585 | 23.0 | 345 | 0.3092 | 0.8914 |
0.1655 | 24.0 | 360 | 0.2937 | 0.9029 |
0.1191 | 25.0 | 375 | 0.3470 | 0.8971 |
0.1756 | 26.0 | 390 | 0.3520 | 0.8857 |
0.1467 | 27.0 | 405 | 0.3552 | 0.88 |
0.1788 | 28.0 | 420 | 0.3994 | 0.8914 |
0.108 | 29.0 | 435 | 0.3685 | 0.9143 |
0.1359 | 30.0 | 450 | 0.3831 | 0.9086 |
0.0982 | 31.0 | 465 | 0.4162 | 0.8971 |
0.1154 | 32.0 | 480 | 0.3634 | 0.9086 |
0.0959 | 33.0 | 495 | 0.3828 | 0.8914 |
0.1136 | 34.0 | 510 | 0.4778 | 0.88 |
0.1184 | 35.0 | 525 | 0.3773 | 0.8857 |
0.0858 | 36.0 | 540 | 0.3628 | 0.8971 |
0.0958 | 37.0 | 555 | 0.4379 | 0.8857 |
0.0891 | 38.0 | 570 | 0.3993 | 0.8857 |
0.1132 | 39.0 | 585 | 0.3931 | 0.8857 |
0.093 | 40.0 | 600 | 0.3840 | 0.9314 |
0.094 | 41.0 | 615 | 0.3870 | 0.9029 |
0.0938 | 42.0 | 630 | 0.4061 | 0.8914 |
0.1024 | 43.0 | 645 | 0.5408 | 0.8571 |
0.0835 | 44.0 | 660 | 0.3230 | 0.9086 |
0.0795 | 45.0 | 675 | 0.3599 | 0.9086 |
0.053 | 46.0 | 690 | 0.4675 | 0.8686 |
0.0673 | 47.0 | 705 | 0.4926 | 0.8857 |
0.0888 | 48.0 | 720 | 0.4276 | 0.8971 |
0.0539 | 49.0 | 735 | 0.5204 | 0.8686 |
0.0662 | 50.0 | 750 | 0.4685 | 0.9143 |
0.0738 | 51.0 | 765 | 0.3824 | 0.9143 |
0.0459 | 52.0 | 780 | 0.4200 | 0.9143 |
0.0651 | 53.0 | 795 | 0.4323 | 0.9086 |
0.0744 | 54.0 | 810 | 0.4256 | 0.9086 |
0.0499 | 55.0 | 825 | 0.4435 | 0.9143 |
0.076 | 56.0 | 840 | 0.4884 | 0.9086 |
0.0689 | 57.0 | 855 | 0.4900 | 0.9029 |
0.0899 | 58.0 | 870 | 0.5848 | 0.8971 |
0.054 | 59.0 | 885 | 0.5400 | 0.9143 |
0.0524 | 60.0 | 900 | 0.5701 | 0.8914 |
0.0532 | 61.0 | 915 | 0.5269 | 0.9029 |
0.0596 | 62.0 | 930 | 0.5223 | 0.88 |
0.0814 | 63.0 | 945 | 0.5199 | 0.8914 |
0.0899 | 64.0 | 960 | 0.4566 | 0.9143 |
0.0649 | 65.0 | 975 | 0.4577 | 0.92 |
0.0508 | 66.0 | 990 | 0.4655 | 0.92 |
0.0529 | 67.0 | 1005 | 0.4868 | 0.9029 |
0.0707 | 68.0 | 1020 | 0.4883 | 0.9029 |
0.0603 | 69.0 | 1035 | 0.5059 | 0.9029 |
0.0776 | 70.0 | 1050 | 0.5878 | 0.8857 |
0.0747 | 71.0 | 1065 | 0.4694 | 0.92 |
0.0681 | 72.0 | 1080 | 0.5228 | 0.8857 |
0.0357 | 73.0 | 1095 | 0.5152 | 0.8857 |
0.049 | 74.0 | 1110 | 0.5197 | 0.9086 |
0.0335 | 75.0 | 1125 | 0.5028 | 0.9143 |
0.0523 | 76.0 | 1140 | 0.6165 | 0.8857 |
0.0258 | 77.0 | 1155 | 0.5491 | 0.8971 |
0.0398 | 78.0 | 1170 | 0.5218 | 0.8971 |
0.0408 | 79.0 | 1185 | 0.6784 | 0.8743 |
0.0606 | 80.0 | 1200 | 0.4997 | 0.9086 |
0.062 | 81.0 | 1215 | 0.5853 | 0.8857 |
0.0485 | 82.0 | 1230 | 0.5230 | 0.9086 |
0.0337 | 83.0 | 1245 | 0.5579 | 0.8971 |
0.0474 | 84.0 | 1260 | 0.5233 | 0.8971 |
0.0542 | 85.0 | 1275 | 0.5082 | 0.9143 |
0.0512 | 86.0 | 1290 | 0.5149 | 0.9029 |
0.0497 | 87.0 | 1305 | 0.5065 | 0.8971 |
0.0317 | 88.0 | 1320 | 0.4929 | 0.9143 |
0.0507 | 89.0 | 1335 | 0.5252 | 0.9143 |
0.0229 | 90.0 | 1350 | 0.5545 | 0.8914 |
0.0248 | 91.0 | 1365 | 0.5472 | 0.8914 |
0.0499 | 92.0 | 1380 | 0.5360 | 0.8971 |
0.0241 | 93.0 | 1395 | 0.5291 | 0.8971 |
0.0458 | 94.0 | 1410 | 0.5110 | 0.9029 |
0.0304 | 95.0 | 1425 | 0.5070 | 0.9029 |
0.1043 | 96.0 | 1440 | 0.5084 | 0.9086 |
0.0454 | 97.0 | 1455 | 0.5128 | 0.9086 |
0.0474 | 98.0 | 1470 | 0.5270 | 0.8971 |
0.0325 | 99.0 | 1485 | 0.5307 | 0.8971 |
0.0273 | 100.0 | 1500 | 0.5334 | 0.8971 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.19.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV74
Base model
microsoft/swinv2-tiny-patch4-window8-256