swinv2-tiny-patch4-window8-256-dmae-humeda-DAV76

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4077
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1017 0.9524 15 1.0955 0.3143
0.9212 1.9524 30 0.8475 0.6743
0.7117 2.9524 45 0.6980 0.6171
0.5496 3.9524 60 0.4957 0.8
0.5051 4.9524 75 0.4578 0.7714
0.4331 5.9524 90 0.3767 0.8457
0.4324 6.9524 105 0.4334 0.8229
0.3664 7.9524 120 0.4469 0.7829
0.335 8.9524 135 0.3407 0.8743
0.2977 9.9524 150 0.3569 0.84
0.2978 10.9524 165 0.3858 0.8686
0.2983 11.9524 180 0.3657 0.8571
0.2539 12.9524 195 0.3979 0.8514
0.2215 13.9524 210 0.3755 0.8514
0.2474 14.9524 225 0.4143 0.8457
0.2245 15.9524 240 0.3954 0.8629
0.2427 16.9524 255 0.4063 0.8743
0.2036 17.9524 270 0.4762 0.8343
0.2397 18.9524 285 0.4077 0.88
0.2157 19.9524 300 0.5519 0.8114
0.221 20.9524 315 0.5091 0.8114
0.1799 21.9524 330 0.4301 0.8629
0.1777 22.9524 345 0.4592 0.8743
0.1641 23.9524 360 0.4445 0.8686
0.1582 24.9524 375 0.4807 0.8571
0.1394 25.9524 390 0.4472 0.8743
0.16 26.9524 405 0.5020 0.8743
0.1826 27.9524 420 0.4834 0.8686
0.1648 28.9524 435 0.5368 0.8629
0.155 29.9524 450 0.5284 0.8514
0.1378 30.9524 465 0.4585 0.8743
0.1608 31.9524 480 0.4883 0.8686
0.1435 32.9524 495 0.5400 0.84
0.1444 33.9524 510 0.5379 0.8571
0.1504 34.9524 525 0.5876 0.8629
0.1108 35.9524 540 0.5414 0.8571
0.1392 36.9524 555 0.5801 0.8571
0.1065 37.9524 570 0.5940 0.8629
0.087 38.9524 585 0.6316 0.8571
0.127 39.9524 600 0.6509 0.8571
0.1198 40.9524 615 0.6311 0.8571
0.1255 41.9524 630 0.5793 0.8514
0.1317 42.9524 645 0.5860 0.8343
0.1016 43.9524 660 0.5839 0.8629
0.1249 44.9524 675 0.5763 0.8571
0.0762 45.9524 690 0.5853 0.8629
0.1075 46.9524 705 0.5967 0.8514
0.0792 47.9524 720 0.6012 0.8457
0.1033 48.9524 735 0.5989 0.8457
0.1115 49.9524 750 0.6030 0.8457

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.19.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV76

Finetuned
(137)
this model