swinv2-tiny-patch4-window8-256-dmae-humeda-DAV77

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3654
  • Accuracy: 0.8914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1317 0.9524 15 1.0850 0.3657
1.0134 1.9524 30 1.0048 0.56
0.9444 2.9524 45 0.7731 0.7371
0.6457 3.9524 60 0.5598 0.7486
0.5593 4.9524 75 0.4836 0.7771
0.4781 5.9524 90 0.4486 0.7829
0.4769 6.9524 105 0.4365 0.8114
0.4366 7.9524 120 0.5434 0.7657
0.4248 8.9524 135 0.3744 0.8457
0.3298 9.9524 150 0.3618 0.8343
0.342 10.9524 165 0.3661 0.8629
0.3033 11.9524 180 0.3753 0.8343
0.3106 12.9524 195 0.4607 0.8229
0.264 13.9524 210 0.3623 0.8457
0.2407 14.9524 225 0.3982 0.8343
0.2758 15.9524 240 0.3694 0.8514
0.2719 16.9524 255 0.5112 0.8171
0.2311 17.9524 270 0.3977 0.8571
0.246 18.9524 285 0.4087 0.8629
0.2193 19.9524 300 0.4239 0.8343
0.2419 20.9524 315 0.3980 0.8514
0.2084 21.9524 330 0.4278 0.8686
0.1973 22.9524 345 0.3654 0.8914
0.1807 23.9524 360 0.4050 0.8629
0.1693 24.9524 375 0.5299 0.8229
0.1594 25.9524 390 0.4832 0.8514
0.1876 26.9524 405 0.5069 0.84
0.1514 27.9524 420 0.5056 0.8571
0.1818 28.9524 435 0.5403 0.8286
0.1682 29.9524 450 0.5058 0.84
0.1681 30.9524 465 0.5187 0.8114
0.1394 31.9524 480 0.5843 0.8629
0.1659 32.9524 495 0.4707 0.8629
0.1753 33.9524 510 0.5603 0.8229
0.1884 34.9524 525 0.5372 0.8343
0.1399 35.9524 540 0.5559 0.8629
0.1603 36.9524 555 0.6177 0.8629
0.1353 37.9524 570 0.5262 0.8457
0.0874 38.9524 585 0.4945 0.8629
0.1054 39.9524 600 0.6391 0.8629
0.1156 40.9524 615 0.6080 0.8514
0.1247 41.9524 630 0.6483 0.8114
0.1396 42.9524 645 0.5377 0.8457
0.117 43.9524 660 0.5460 0.8629
0.1403 44.9524 675 0.6856 0.84
0.1089 45.9524 690 0.6401 0.8514
0.1022 46.9524 705 0.6795 0.8514
0.09 47.9524 720 0.6025 0.8457
0.0948 48.9524 735 0.6489 0.8514
0.1177 49.9524 750 0.6105 0.8571
0.0797 50.9524 765 0.7485 0.8229
0.0872 51.9524 780 0.6390 0.84
0.1038 52.9524 795 0.6190 0.8743
0.1361 53.9524 810 0.6417 0.8457
0.1205 54.9524 825 0.6161 0.84
0.1026 55.9524 840 0.5836 0.8514
0.1059 56.9524 855 0.6865 0.8571
0.0999 57.9524 870 0.7455 0.8629
0.1075 58.9524 885 0.7018 0.8343
0.0952 59.9524 900 0.6851 0.8286
0.0796 60.9524 915 0.6301 0.8514
0.0952 61.9524 930 0.6734 0.8343
0.1041 62.9524 945 0.6475 0.8514
0.0961 63.9524 960 0.7369 0.8229
0.0897 64.9524 975 0.7261 0.84
0.0591 65.9524 990 0.7303 0.8286
0.106 66.9524 1005 0.6512 0.84
0.0817 67.9524 1020 0.6835 0.8229
0.0653 68.9524 1035 0.7211 0.8514
0.0801 69.9524 1050 0.7762 0.8343
0.0754 70.9524 1065 0.7669 0.8571
0.067 71.9524 1080 0.8578 0.8457
0.0896 72.9524 1095 0.8271 0.84
0.0622 73.9524 1110 0.7458 0.8286
0.0741 74.9524 1125 0.7236 0.84
0.0687 75.9524 1140 0.7986 0.84
0.0877 76.9524 1155 0.7999 0.8286
0.1034 77.9524 1170 0.7840 0.8286
0.0716 78.9524 1185 0.7871 0.8343
0.0659 79.9524 1200 0.7860 0.8571
0.0844 80.9524 1215 0.8366 0.8514
0.0858 81.9524 1230 0.8152 0.8629
0.0531 82.9524 1245 0.7717 0.8286
0.075 83.9524 1260 0.8578 0.8171
0.059 84.9524 1275 0.8240 0.8229
0.0896 85.9524 1290 0.8907 0.8343
0.0741 86.9524 1305 0.8814 0.84
0.0697 87.9524 1320 0.9080 0.8286
0.0552 88.9524 1335 0.8345 0.8343
0.0576 89.9524 1350 0.8746 0.8229
0.0729 90.9524 1365 0.8196 0.8343
0.0782 91.9524 1380 0.8073 0.8343
0.0584 92.9524 1395 0.8011 0.8286
0.0471 93.9524 1410 0.8076 0.8286
0.0544 94.9524 1425 0.8390 0.8229
0.0576 95.9524 1440 0.8575 0.8286
0.0608 96.9524 1455 0.8392 0.8229
0.064 97.9524 1470 0.8266 0.8286
0.0742 98.9524 1485 0.8311 0.8286
0.0471 99.9524 1500 0.8333 0.8286

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 2.19.0
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV77

Finetuned
(137)
this model