Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: true
chat_template: llama3
cosine_min_lr_ratio: 0.3
dataset_prepared_path: null
datasets:
- data_files:
  - 8cdb693ff17961f7_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/8cdb693ff17961f7_train_data.json
  type:
    field_instruction: title
    field_output: content
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/21e2b82c-61e1-4afc-bf96-f29332022f9d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 6240
micro_batch_size: 4
mlflow_experiment_name: /tmp/8cdb693ff17961f7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 51d22812-c4f7-499f-904a-c95d4ff253e0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 51d22812-c4f7-499f-904a-c95d4ff253e0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

21e2b82c-61e1-4afc-bf96-f29332022f9d

This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3420

Training results

Training Loss Epoch Step Validation Loss
3.6772 0.0009 1 3.5835
3.2848 0.1754 200 3.3419
3.2284 0.3509 400 3.3297
3.2566 0.5263 600 3.3188
3.2582 0.7018 800 3.3137
3.4311 0.8772 1000 3.3055
2.8116 1.0526 1200 3.3162
3.1577 1.2281 1400 3.3233
3.1564 1.4035 1600 3.3235
3.2275 1.5789 1800 3.3196

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Romain-XV/21e2b82c-61e1-4afc-bf96-f29332022f9d