See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Coder-7B-Instruct
bf16: true
chat_template: llama3
cosine_min_lr_ratio: 0.3
dataset_prepared_path: null
datasets:
- data_files:
- b870f2efc62784b0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b870f2efc62784b0_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/22500caa-2bbd-4af3-b84b-203da328e702
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2150
micro_batch_size: 4
mlflow_experiment_name: /tmp/b870f2efc62784b0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04854416062291867
wandb_entity: null
wandb_mode: online
wandb_name: 0f3f41a6-d6fc-4e0e-96e4-e7fcdc965eb3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0f3f41a6-d6fc-4e0e-96e4-e7fcdc965eb3
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
22500caa-2bbd-4af3-b84b-203da328e702
This model is a fine-tuned version of unsloth/Qwen2.5-Coder-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2403
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4922 | 0.0002 | 1 | 0.5588 |
0.2211 | 0.0327 | 200 | 0.2636 |
0.2812 | 0.0653 | 400 | 0.2606 |
0.2185 | 0.0980 | 600 | 0.2610 |
0.1998 | 0.1306 | 800 | 0.2576 |
0.2312 | 0.1633 | 1000 | 0.2537 |
0.229 | 0.1959 | 1200 | 0.2504 |
0.2113 | 0.2286 | 1400 | 0.2471 |
0.1745 | 0.2612 | 1600 | 0.2444 |
0.1963 | 0.2939 | 1800 | 0.2417 |
0.1982 | 0.3265 | 2000 | 0.2403 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for Romain-XV/22500caa-2bbd-4af3-b84b-203da328e702
Base model
Qwen/Qwen2.5-7B
Finetuned
Qwen/Qwen2.5-Coder-7B
Finetuned
Qwen/Qwen2.5-Coder-7B-Instruct
Finetuned
unsloth/Qwen2.5-Coder-7B-Instruct