See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: jhflow/mistral7b-lora-multi-turn-v2
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a8655413fbba9b95_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a8655413fbba9b95_train_data.json
type:
field_input: input
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 30
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/2720488e-8f03-4ceb-a0aa-55f808e6efac
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/a8655413fbba9b95_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 48918ade-50c2-4c48-ace4-9c9aafad1b27
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 48918ade-50c2-4c48-ace4-9c9aafad1b27
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
2720488e-8f03-4ceb-a0aa-55f808e6efac
This model is a fine-tuned version of jhflow/mistral7b-lora-multi-turn-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7739
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
17.8285 | 0.0025 | 1 | 1.1322 |
13.9151 | 0.1263 | 50 | 0.8992 |
14.0505 | 0.2526 | 100 | 0.8687 |
13.1205 | 0.3789 | 150 | 0.8503 |
12.4949 | 0.5052 | 200 | 0.8358 |
13.48 | 0.6315 | 250 | 0.8234 |
13.5189 | 0.7578 | 300 | 0.8108 |
12.6055 | 0.8841 | 350 | 0.7991 |
10.3029 | 1.0115 | 400 | 0.7994 |
10.7447 | 1.1378 | 450 | 0.7965 |
10.5841 | 1.2641 | 500 | 0.7910 |
9.9121 | 1.3904 | 550 | 0.7827 |
9.5545 | 1.5167 | 600 | 0.7795 |
9.9359 | 1.6430 | 650 | 0.7771 |
10.6437 | 1.7693 | 700 | 0.7737 |
9.6907 | 1.8956 | 750 | 0.7739 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for Romain-XV/2720488e-8f03-4ceb-a0aa-55f808e6efac
Base model
jhflow/mistral7b-lora-multi-turn-v2