Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
cosine_min_lr_ratio: 0.3
dataset_prepared_path: null
datasets:
- data_files:
  - 94bc225e90b38509_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/94bc225e90b38509_train_data.json
  type:
    field_input: description
    field_instruction: reference
    field_output: article
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/6dcbd096-39ee-4abe-93fb-d769dbdb5e0a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 75317
micro_batch_size: 4
mlflow_experiment_name: /tmp/94bc225e90b38509_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b5890fb6-bacc-436a-9f1f-7bcb9df35f08
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b5890fb6-bacc-436a-9f1f-7bcb9df35f08
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

6dcbd096-39ee-4abe-93fb-d769dbdb5e0a

This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3889

Training results

Training Loss Epoch Step Validation Loss
10.375 0.0008 1 10.3741
10.33 0.1543 200 10.3258
10.3187 0.3085 400 10.3177
10.3149 0.4628 600 10.3138
10.3168 0.6170 800 10.3112
10.3168 0.7713 1000 10.3095
10.3172 0.9256 1200 10.3083
14.2661 1.0800 1400 10.3073
8.8355 1.2343 1600 10.3065
12.1893 1.3885 1800 10.3059
8.483 1.5428 2000 10.3053
10.4896 1.6971 2200 10.3048
11.2808 1.8513 2400 10.3044
6.5668 2.0058 2600 10.3044
10.2144 2.1600 2800 10.3040
11.3883 2.3143 3000 10.3036
11.115 2.4686 3200 10.3035
10.6235 2.6228 3400 10.3032
13.6615 2.7771 3600 10.3031
11.4675 2.9314 3800 10.3030

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Romain-XV/6dcbd096-39ee-4abe-93fb-d769dbdb5e0a

Adapter
(289)
this model