pythia-70m_tatsu-lab_alpaca_farm_sftsd0_policy_pythia-6.9b_gold_internlm2-7b_noise0.25_rmsd0
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7572
- Accuracy: 0.5282
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 0.8364 | 0.5181 |
0.8402 | 0.0648 | 100 | 0.8392 | 0.5054 |
0.8783 | 0.1296 | 200 | 0.8284 | 0.5127 |
0.8148 | 0.1944 | 300 | 0.8139 | 0.5162 |
0.8684 | 0.2592 | 400 | 0.7952 | 0.5208 |
0.7917 | 0.3239 | 500 | 0.7973 | 0.5216 |
0.7964 | 0.3887 | 600 | 0.7907 | 0.5208 |
0.7595 | 0.4535 | 700 | 0.7922 | 0.5150 |
0.8098 | 0.5183 | 800 | 0.7862 | 0.5147 |
0.8204 | 0.5831 | 900 | 0.7865 | 0.5104 |
0.7693 | 0.6479 | 1000 | 0.7828 | 0.5162 |
0.7875 | 0.7127 | 1100 | 0.7758 | 0.5197 |
0.7732 | 0.7775 | 1200 | 0.7736 | 0.5220 |
0.8349 | 0.8422 | 1300 | 0.7675 | 0.5274 |
0.7968 | 0.9070 | 1400 | 0.7693 | 0.5216 |
0.775 | 0.9718 | 1500 | 0.7676 | 0.5239 |
0.7761 | 1.0366 | 1600 | 0.7671 | 0.5282 |
0.7647 | 1.1014 | 1700 | 0.7659 | 0.5258 |
0.7554 | 1.1662 | 1800 | 0.7692 | 0.5258 |
0.7673 | 1.2310 | 1900 | 0.7679 | 0.5208 |
0.8207 | 1.2958 | 2000 | 0.7669 | 0.5228 |
0.7595 | 1.3605 | 2100 | 0.7620 | 0.5297 |
0.8018 | 1.4253 | 2200 | 0.7649 | 0.5170 |
0.7491 | 1.4901 | 2300 | 0.7613 | 0.5208 |
0.7484 | 1.5549 | 2400 | 0.7646 | 0.5201 |
0.7731 | 1.6197 | 2500 | 0.7589 | 0.5235 |
0.7991 | 1.6845 | 2600 | 0.7573 | 0.5174 |
0.755 | 1.7493 | 2700 | 0.7589 | 0.5266 |
0.7889 | 1.8141 | 2800 | 0.7637 | 0.5204 |
0.7737 | 1.8788 | 2900 | 0.7655 | 0.5324 |
0.7964 | 1.9436 | 3000 | 0.7578 | 0.5220 |
0.7299 | 2.0084 | 3100 | 0.7585 | 0.5170 |
0.7558 | 2.0732 | 3200 | 0.7621 | 0.5166 |
0.7634 | 2.1380 | 3300 | 0.7585 | 0.5243 |
0.7394 | 2.2028 | 3400 | 0.7630 | 0.5262 |
0.7617 | 2.2676 | 3500 | 0.7619 | 0.5251 |
0.8106 | 2.3324 | 3600 | 0.7614 | 0.5251 |
0.7674 | 2.3971 | 3700 | 0.7608 | 0.5212 |
0.7482 | 2.4619 | 3800 | 0.7643 | 0.5158 |
0.7894 | 2.5267 | 3900 | 0.7625 | 0.5235 |
0.7532 | 2.5915 | 4000 | 0.7605 | 0.5216 |
0.727 | 2.6563 | 4100 | 0.7601 | 0.5224 |
0.775 | 2.7211 | 4200 | 0.7587 | 0.5243 |
0.7752 | 2.7859 | 4300 | 0.7596 | 0.5220 |
0.76 | 2.8507 | 4400 | 0.7579 | 0.5181 |
0.7704 | 2.9155 | 4500 | 0.7602 | 0.5120 |
0.7651 | 2.9802 | 4600 | 0.7617 | 0.5158 |
0.7715 | 3.0450 | 4700 | 0.7612 | 0.5285 |
0.7478 | 3.1098 | 4800 | 0.7591 | 0.5201 |
0.7895 | 3.1746 | 4900 | 0.7581 | 0.5235 |
0.783 | 3.2394 | 5000 | 0.7591 | 0.5197 |
0.7849 | 3.3042 | 5100 | 0.7599 | 0.5243 |
0.7751 | 3.3690 | 5200 | 0.7560 | 0.5255 |
0.7725 | 3.4338 | 5300 | 0.7616 | 0.5224 |
0.7903 | 3.4985 | 5400 | 0.7606 | 0.5231 |
0.7771 | 3.5633 | 5500 | 0.7607 | 0.5150 |
0.7941 | 3.6281 | 5600 | 0.7604 | 0.5224 |
0.8182 | 3.6929 | 5700 | 0.7598 | 0.5177 |
0.7795 | 3.7577 | 5800 | 0.7621 | 0.5158 |
0.754 | 3.8225 | 5900 | 0.7596 | 0.5228 |
0.7642 | 3.8873 | 6000 | 0.7601 | 0.5197 |
0.7676 | 3.9521 | 6100 | 0.7569 | 0.5204 |
0.7084 | 4.0168 | 6200 | 0.7602 | 0.5189 |
0.7385 | 4.0816 | 6300 | 0.7594 | 0.5231 |
0.769 | 4.1464 | 6400 | 0.7590 | 0.5201 |
0.7212 | 4.2112 | 6500 | 0.7576 | 0.5235 |
0.7858 | 4.2760 | 6600 | 0.7585 | 0.5220 |
0.7003 | 4.3408 | 6700 | 0.7556 | 0.5309 |
0.7822 | 4.4056 | 6800 | 0.7568 | 0.5243 |
0.7652 | 4.4704 | 6900 | 0.7603 | 0.5197 |
0.7636 | 4.5351 | 7000 | 0.7628 | 0.5181 |
0.7962 | 4.5999 | 7100 | 0.7614 | 0.5131 |
0.7464 | 4.6647 | 7200 | 0.7594 | 0.5201 |
0.714 | 4.7295 | 7300 | 0.7620 | 0.5193 |
0.8075 | 4.7943 | 7400 | 0.7603 | 0.5231 |
0.7674 | 4.8591 | 7500 | 0.7565 | 0.5204 |
0.7766 | 4.9239 | 7600 | 0.7601 | 0.5243 |
0.7763 | 4.9887 | 7700 | 0.7579 | 0.5285 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support