pythia-70m_tatsu-lab_alpaca_farm_sftsd0_policy_pythia-6.9b_gold_pythia-6.9b_noise0.2_rmsd2
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7555
- Accuracy: 0.5675
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 0.9081 | 0.5067 |
0.91 | 0.0648 | 100 | 0.9088 | 0.4963 |
0.819 | 0.1295 | 200 | 0.8684 | 0.5098 |
0.83 | 0.1943 | 300 | 0.8459 | 0.5198 |
0.7615 | 0.2591 | 400 | 0.8256 | 0.5317 |
0.8714 | 0.3238 | 500 | 0.8182 | 0.5286 |
0.8431 | 0.3886 | 600 | 0.7987 | 0.5413 |
0.7517 | 0.4534 | 700 | 0.7950 | 0.5306 |
0.7986 | 0.5181 | 800 | 0.7914 | 0.5386 |
0.804 | 0.5829 | 900 | 0.7822 | 0.5406 |
0.7574 | 0.6477 | 1000 | 0.7845 | 0.5483 |
0.7994 | 0.7124 | 1100 | 0.7835 | 0.5456 |
0.787 | 0.7772 | 1200 | 0.7773 | 0.5475 |
0.781 | 0.8420 | 1300 | 0.7771 | 0.5544 |
0.8476 | 0.9067 | 1400 | 0.7700 | 0.5648 |
0.7512 | 0.9715 | 1500 | 0.7666 | 0.5636 |
0.7769 | 1.0363 | 1600 | 0.7682 | 0.5602 |
0.7542 | 1.1010 | 1700 | 0.7639 | 0.5617 |
0.7483 | 1.1658 | 1800 | 0.7639 | 0.5606 |
0.7264 | 1.2306 | 1900 | 0.7618 | 0.5690 |
0.7151 | 1.2953 | 2000 | 0.7612 | 0.5709 |
0.7464 | 1.3601 | 2100 | 0.7624 | 0.5606 |
0.7304 | 1.4249 | 2200 | 0.7578 | 0.5671 |
0.7727 | 1.4896 | 2300 | 0.7585 | 0.5571 |
0.7169 | 1.5544 | 2400 | 0.7564 | 0.5659 |
0.7038 | 1.6192 | 2500 | 0.7575 | 0.5648 |
0.7283 | 1.6839 | 2600 | 0.7599 | 0.5663 |
0.7861 | 1.7487 | 2700 | 0.7544 | 0.5740 |
0.7279 | 1.8135 | 2800 | 0.7573 | 0.5625 |
0.7814 | 1.8782 | 2900 | 0.7588 | 0.5590 |
0.7361 | 1.9430 | 3000 | 0.7535 | 0.5705 |
0.7679 | 2.0078 | 3100 | 0.7540 | 0.5667 |
0.7625 | 2.0725 | 3200 | 0.7530 | 0.5705 |
0.7783 | 2.1373 | 3300 | 0.7549 | 0.5582 |
0.7589 | 2.2021 | 3400 | 0.7579 | 0.5652 |
0.7891 | 2.2668 | 3500 | 0.7563 | 0.5671 |
0.7092 | 2.3316 | 3600 | 0.7535 | 0.5625 |
0.7253 | 2.3964 | 3700 | 0.7518 | 0.5671 |
0.7155 | 2.4611 | 3800 | 0.7534 | 0.5755 |
0.802 | 2.5259 | 3900 | 0.7562 | 0.5690 |
0.7109 | 2.5907 | 4000 | 0.7529 | 0.5679 |
0.714 | 2.6554 | 4100 | 0.7548 | 0.5667 |
0.7307 | 2.7202 | 4200 | 0.7532 | 0.5590 |
0.7531 | 2.7850 | 4300 | 0.7544 | 0.5648 |
0.7225 | 2.8497 | 4400 | 0.7558 | 0.5652 |
0.7156 | 2.9145 | 4500 | 0.7524 | 0.5736 |
0.7635 | 2.9793 | 4600 | 0.7555 | 0.5652 |
0.6646 | 3.0440 | 4700 | 0.7517 | 0.5732 |
0.7721 | 3.1088 | 4800 | 0.7563 | 0.5621 |
0.7731 | 3.1736 | 4900 | 0.7570 | 0.5648 |
0.6982 | 3.2383 | 5000 | 0.7552 | 0.5725 |
0.7271 | 3.3031 | 5100 | 0.7591 | 0.5625 |
0.7447 | 3.3679 | 5200 | 0.7589 | 0.5656 |
0.7745 | 3.4326 | 5300 | 0.7544 | 0.5702 |
0.745 | 3.4974 | 5400 | 0.7567 | 0.5667 |
0.7375 | 3.5622 | 5500 | 0.7544 | 0.5675 |
0.7916 | 3.6269 | 5600 | 0.7565 | 0.5648 |
0.71 | 3.6917 | 5700 | 0.7574 | 0.5702 |
0.7964 | 3.7565 | 5800 | 0.7540 | 0.5705 |
0.7266 | 3.8212 | 5900 | 0.7550 | 0.5659 |
0.7312 | 3.8860 | 6000 | 0.7518 | 0.5717 |
0.7473 | 3.9508 | 6100 | 0.7561 | 0.5648 |
0.7065 | 4.0155 | 6200 | 0.7580 | 0.5586 |
0.7449 | 4.0803 | 6300 | 0.7532 | 0.5663 |
0.8008 | 4.1451 | 6400 | 0.7540 | 0.5729 |
0.8077 | 4.2098 | 6500 | 0.7580 | 0.5567 |
0.7311 | 4.2746 | 6600 | 0.7575 | 0.5682 |
0.7022 | 4.3394 | 6700 | 0.7540 | 0.5640 |
0.7783 | 4.4041 | 6800 | 0.7547 | 0.5629 |
0.7552 | 4.4689 | 6900 | 0.7557 | 0.5606 |
0.7291 | 4.5337 | 7000 | 0.7509 | 0.5725 |
0.7502 | 4.5984 | 7100 | 0.7544 | 0.5748 |
0.775 | 4.6632 | 7200 | 0.7543 | 0.5644 |
0.753 | 4.7280 | 7300 | 0.7528 | 0.5675 |
0.7585 | 4.7927 | 7400 | 0.7554 | 0.5698 |
0.718 | 4.8575 | 7500 | 0.7557 | 0.5679 |
0.7368 | 4.9223 | 7600 | 0.7527 | 0.5705 |
0.7514 | 4.9870 | 7700 | 0.7548 | 0.5690 |
Framework versions
- Transformers 4.43.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 70
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support