pythia-70m_tatsu-lab_alpaca_farm_sftsd0_policy_pythia-6.9b_gold_pythia-6.9b_noise0.2_rmsd3
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7314
- Accuracy: 0.5621
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 0.8474 | 0.5213 |
0.7788 | 0.0648 | 100 | 0.8418 | 0.5306 |
0.7792 | 0.1295 | 200 | 0.8252 | 0.5333 |
0.7755 | 0.1943 | 300 | 0.8147 | 0.5306 |
0.7948 | 0.2591 | 400 | 0.7920 | 0.5294 |
0.8293 | 0.3238 | 500 | 0.7882 | 0.5356 |
0.7756 | 0.3886 | 600 | 0.7807 | 0.5459 |
0.7474 | 0.4534 | 700 | 0.7664 | 0.5394 |
0.8053 | 0.5181 | 800 | 0.7592 | 0.5348 |
0.6946 | 0.5829 | 900 | 0.7629 | 0.5417 |
0.7973 | 0.6477 | 1000 | 0.7503 | 0.5433 |
0.7182 | 0.7124 | 1100 | 0.7570 | 0.5475 |
0.7447 | 0.7772 | 1200 | 0.7490 | 0.5529 |
0.7678 | 0.8420 | 1300 | 0.7466 | 0.5517 |
0.7792 | 0.9067 | 1400 | 0.7443 | 0.5479 |
0.7788 | 0.9715 | 1500 | 0.7460 | 0.5394 |
0.7568 | 1.0363 | 1600 | 0.7512 | 0.5479 |
0.7443 | 1.1010 | 1700 | 0.7415 | 0.5506 |
0.7349 | 1.1658 | 1800 | 0.7406 | 0.5490 |
0.6989 | 1.2306 | 1900 | 0.7446 | 0.5479 |
0.7071 | 1.2953 | 2000 | 0.7395 | 0.5525 |
0.7469 | 1.3601 | 2100 | 0.7373 | 0.5540 |
0.8139 | 1.4249 | 2200 | 0.7366 | 0.5621 |
0.7045 | 1.4896 | 2300 | 0.7360 | 0.5575 |
0.7418 | 1.5544 | 2400 | 0.7350 | 0.5556 |
0.7366 | 1.6192 | 2500 | 0.7409 | 0.5567 |
0.7824 | 1.6839 | 2600 | 0.7312 | 0.5602 |
0.7672 | 1.7487 | 2700 | 0.7366 | 0.5567 |
0.7371 | 1.8135 | 2800 | 0.7362 | 0.5575 |
0.7404 | 1.8782 | 2900 | 0.7351 | 0.5629 |
0.7093 | 1.9430 | 3000 | 0.7337 | 0.5594 |
0.6711 | 2.0078 | 3100 | 0.7355 | 0.5563 |
0.7498 | 2.0725 | 3200 | 0.7333 | 0.5552 |
0.693 | 2.1373 | 3300 | 0.7280 | 0.5617 |
0.7286 | 2.2021 | 3400 | 0.7328 | 0.5594 |
0.786 | 2.2668 | 3500 | 0.7298 | 0.5629 |
0.7302 | 2.3316 | 3600 | 0.7265 | 0.5602 |
0.732 | 2.3964 | 3700 | 0.7327 | 0.5563 |
0.7494 | 2.4611 | 3800 | 0.7305 | 0.5636 |
0.7543 | 2.5259 | 3900 | 0.7281 | 0.5644 |
0.7147 | 2.5907 | 4000 | 0.7331 | 0.5667 |
0.7091 | 2.6554 | 4100 | 0.7256 | 0.5636 |
0.748 | 2.7202 | 4200 | 0.7330 | 0.5656 |
0.7248 | 2.7850 | 4300 | 0.7321 | 0.5606 |
0.758 | 2.8497 | 4400 | 0.7309 | 0.5656 |
0.7401 | 2.9145 | 4500 | 0.7299 | 0.5598 |
0.7646 | 2.9793 | 4600 | 0.7280 | 0.5663 |
0.7197 | 3.0440 | 4700 | 0.7324 | 0.5613 |
0.7302 | 3.1088 | 4800 | 0.7326 | 0.5556 |
0.7165 | 3.1736 | 4900 | 0.7305 | 0.5575 |
0.7543 | 3.2383 | 5000 | 0.7297 | 0.5698 |
0.7327 | 3.3031 | 5100 | 0.7298 | 0.5598 |
0.745 | 3.3679 | 5200 | 0.7328 | 0.5656 |
0.723 | 3.4326 | 5300 | 0.7290 | 0.5667 |
0.7345 | 3.4974 | 5400 | 0.7286 | 0.5686 |
0.725 | 3.5622 | 5500 | 0.7335 | 0.5586 |
0.6859 | 3.6269 | 5600 | 0.7308 | 0.5586 |
0.7275 | 3.6917 | 5700 | 0.7347 | 0.5540 |
0.7133 | 3.7565 | 5800 | 0.7302 | 0.5625 |
0.7597 | 3.8212 | 5900 | 0.7314 | 0.5640 |
0.7031 | 3.8860 | 6000 | 0.7280 | 0.5629 |
0.7347 | 3.9508 | 6100 | 0.7293 | 0.5594 |
0.7601 | 4.0155 | 6200 | 0.7241 | 0.5686 |
0.7223 | 4.0803 | 6300 | 0.7276 | 0.5690 |
0.7778 | 4.1451 | 6400 | 0.7307 | 0.5621 |
0.7243 | 4.2098 | 6500 | 0.7286 | 0.5575 |
0.7635 | 4.2746 | 6600 | 0.7294 | 0.5606 |
0.7665 | 4.3394 | 6700 | 0.7324 | 0.5609 |
0.6987 | 4.4041 | 6800 | 0.7297 | 0.5632 |
0.7242 | 4.4689 | 6900 | 0.7314 | 0.5621 |
0.7585 | 4.5337 | 7000 | 0.7270 | 0.5632 |
0.7189 | 4.5984 | 7100 | 0.7294 | 0.5552 |
0.7599 | 4.6632 | 7200 | 0.7305 | 0.5698 |
0.7451 | 4.7280 | 7300 | 0.7266 | 0.5644 |
0.7214 | 4.7927 | 7400 | 0.7267 | 0.5671 |
0.7534 | 4.8575 | 7500 | 0.7269 | 0.5667 |
0.7225 | 4.9223 | 7600 | 0.7284 | 0.5636 |
0.7383 | 4.9870 | 7700 | 0.7319 | 0.5629 |
Framework versions
- Transformers 4.43.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 75
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support