pythia-70m_tatsu-lab_alpaca_farm_sftsd1_policy_pythia-6.9b_gold_offsetbias-8b_noise0.25_rmsd2
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7958
- Accuracy: 0.5328
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 1.0376 | 0.5204 |
0.9796 | 0.0648 | 100 | 1.0307 | 0.5255 |
0.9796 | 0.1296 | 200 | 0.9852 | 0.5181 |
1.0226 | 0.1944 | 300 | 0.9230 | 0.5328 |
0.8887 | 0.2592 | 400 | 0.8970 | 0.5390 |
0.9979 | 0.3239 | 500 | 0.8753 | 0.5378 |
0.9373 | 0.3887 | 600 | 0.8634 | 0.5359 |
0.8312 | 0.4535 | 700 | 0.8543 | 0.5382 |
0.8344 | 0.5183 | 800 | 0.8407 | 0.5394 |
0.835 | 0.5831 | 900 | 0.8379 | 0.5394 |
0.7985 | 0.6479 | 1000 | 0.8285 | 0.5336 |
0.8169 | 0.7127 | 1100 | 0.8284 | 0.5374 |
0.7677 | 0.7775 | 1200 | 0.8268 | 0.5297 |
0.8238 | 0.8422 | 1300 | 0.8205 | 0.5316 |
0.8802 | 0.9070 | 1400 | 0.8179 | 0.5247 |
0.8624 | 0.9718 | 1500 | 0.8153 | 0.5363 |
0.7978 | 1.0366 | 1600 | 0.8122 | 0.5293 |
0.802 | 1.1014 | 1700 | 0.8098 | 0.5401 |
0.7759 | 1.1662 | 1800 | 0.8122 | 0.5270 |
0.7078 | 1.2310 | 1900 | 0.8081 | 0.5274 |
0.8093 | 1.2958 | 2000 | 0.8093 | 0.5328 |
0.8151 | 1.3605 | 2100 | 0.8115 | 0.5228 |
0.7812 | 1.4253 | 2200 | 0.8094 | 0.5320 |
0.8302 | 1.4901 | 2300 | 0.8028 | 0.5382 |
0.7456 | 1.5549 | 2400 | 0.8070 | 0.5282 |
0.8468 | 1.6197 | 2500 | 0.8007 | 0.5417 |
0.7847 | 1.6845 | 2600 | 0.8016 | 0.5301 |
0.79 | 1.7493 | 2700 | 0.8032 | 0.5351 |
0.7672 | 1.8141 | 2800 | 0.8000 | 0.5324 |
0.7606 | 1.8788 | 2900 | 0.7981 | 0.5401 |
0.8245 | 1.9436 | 3000 | 0.8057 | 0.5359 |
0.7812 | 2.0084 | 3100 | 0.8043 | 0.5320 |
0.7873 | 2.0732 | 3200 | 0.7962 | 0.5351 |
0.832 | 2.1380 | 3300 | 0.8027 | 0.5282 |
0.7433 | 2.2028 | 3400 | 0.8030 | 0.5320 |
0.8363 | 2.2676 | 3500 | 0.7997 | 0.5282 |
0.7823 | 2.3324 | 3600 | 0.7986 | 0.5370 |
0.756 | 2.3971 | 3700 | 0.7982 | 0.5336 |
0.7662 | 2.4619 | 3800 | 0.8001 | 0.5378 |
0.8005 | 2.5267 | 3900 | 0.8001 | 0.5336 |
0.8206 | 2.5915 | 4000 | 0.7938 | 0.5289 |
0.7837 | 2.6563 | 4100 | 0.7978 | 0.5347 |
0.7564 | 2.7211 | 4200 | 0.7967 | 0.5328 |
0.7935 | 2.7859 | 4300 | 0.7922 | 0.5397 |
0.8173 | 2.8507 | 4400 | 0.7986 | 0.5208 |
0.8222 | 2.9155 | 4500 | 0.7999 | 0.5309 |
0.7596 | 2.9802 | 4600 | 0.7929 | 0.5324 |
0.8207 | 3.0450 | 4700 | 0.8014 | 0.5285 |
0.8005 | 3.1098 | 4800 | 0.8002 | 0.5274 |
0.7875 | 3.1746 | 4900 | 0.7976 | 0.5332 |
0.7895 | 3.2394 | 5000 | 0.7983 | 0.5324 |
0.8003 | 3.3042 | 5100 | 0.7983 | 0.5340 |
0.8325 | 3.3690 | 5200 | 0.7983 | 0.5332 |
0.8406 | 3.4338 | 5300 | 0.7922 | 0.5451 |
0.8002 | 3.4985 | 5400 | 0.7957 | 0.5289 |
0.7957 | 3.5633 | 5500 | 0.7967 | 0.5347 |
0.7908 | 3.6281 | 5600 | 0.7960 | 0.5312 |
0.7469 | 3.6929 | 5700 | 0.7926 | 0.5332 |
0.7829 | 3.7577 | 5800 | 0.7965 | 0.5285 |
0.8123 | 3.8225 | 5900 | 0.7942 | 0.5355 |
0.7749 | 3.8873 | 6000 | 0.7913 | 0.5332 |
0.7825 | 3.9521 | 6100 | 0.7941 | 0.5359 |
0.8528 | 4.0168 | 6200 | 0.7968 | 0.5293 |
0.7903 | 4.0816 | 6300 | 0.7959 | 0.5309 |
0.8014 | 4.1464 | 6400 | 0.8005 | 0.5320 |
0.7819 | 4.2112 | 6500 | 0.7969 | 0.5262 |
0.7854 | 4.2760 | 6600 | 0.7975 | 0.5351 |
0.7952 | 4.3408 | 6700 | 0.7937 | 0.5336 |
0.8149 | 4.4056 | 6800 | 0.8001 | 0.5316 |
0.7745 | 4.4704 | 6900 | 0.7979 | 0.5274 |
0.809 | 4.5351 | 7000 | 0.7992 | 0.5324 |
0.7665 | 4.5999 | 7100 | 0.7999 | 0.5258 |
0.8056 | 4.6647 | 7200 | 0.7998 | 0.5320 |
0.7461 | 4.7295 | 7300 | 0.7967 | 0.5324 |
0.8448 | 4.7943 | 7400 | 0.7969 | 0.5289 |
0.8661 | 4.8591 | 7500 | 0.7972 | 0.5340 |
0.8713 | 4.9239 | 7600 | 0.7978 | 0.5293 |
0.7934 | 4.9887 | 7700 | 0.7955 | 0.5351 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support