pythia-70m_tatsu-lab_alpaca_farm_sftsd1_policy_pythia-6.9b_gold_offsetbias-8b_noise0.25_rmsd4
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7998
- Accuracy: 0.5054
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 1.0719 | 0.4896 |
1.0951 | 0.0648 | 100 | 1.0575 | 0.4900 |
0.8702 | 0.1296 | 200 | 0.9985 | 0.4819 |
0.8745 | 0.1944 | 300 | 0.9444 | 0.4934 |
0.8939 | 0.2592 | 400 | 0.9199 | 0.4931 |
0.9431 | 0.3239 | 500 | 0.8928 | 0.4977 |
0.8673 | 0.3887 | 600 | 0.8784 | 0.4896 |
0.8493 | 0.4535 | 700 | 0.8565 | 0.4942 |
0.8609 | 0.5183 | 800 | 0.8522 | 0.4992 |
0.8171 | 0.5831 | 900 | 0.8526 | 0.4973 |
0.8519 | 0.6479 | 1000 | 0.8439 | 0.4996 |
0.7549 | 0.7127 | 1100 | 0.8415 | 0.4938 |
0.85 | 0.7775 | 1200 | 0.8399 | 0.4911 |
0.8312 | 0.8422 | 1300 | 0.8361 | 0.4927 |
0.8413 | 0.9070 | 1400 | 0.8286 | 0.4969 |
0.8313 | 0.9718 | 1500 | 0.8300 | 0.4981 |
0.8446 | 1.0366 | 1600 | 0.8207 | 0.4946 |
0.8405 | 1.1014 | 1700 | 0.8229 | 0.5042 |
0.8415 | 1.1662 | 1800 | 0.8210 | 0.4988 |
0.7971 | 1.2310 | 1900 | 0.8190 | 0.5066 |
0.8116 | 1.2958 | 2000 | 0.8146 | 0.4981 |
0.7997 | 1.3605 | 2100 | 0.8199 | 0.4923 |
0.7576 | 1.4253 | 2200 | 0.8184 | 0.5008 |
0.8303 | 1.4901 | 2300 | 0.8179 | 0.5108 |
0.8283 | 1.5549 | 2400 | 0.8133 | 0.5085 |
0.8233 | 1.6197 | 2500 | 0.8081 | 0.5050 |
0.8015 | 1.6845 | 2600 | 0.8084 | 0.5027 |
0.7777 | 1.7493 | 2700 | 0.8118 | 0.5093 |
0.7986 | 1.8141 | 2800 | 0.8126 | 0.4965 |
0.8121 | 1.8788 | 2900 | 0.8055 | 0.5108 |
0.7784 | 1.9436 | 3000 | 0.8126 | 0.5019 |
0.8096 | 2.0084 | 3100 | 0.8112 | 0.5042 |
0.8363 | 2.0732 | 3200 | 0.8054 | 0.5073 |
0.8316 | 2.1380 | 3300 | 0.8046 | 0.5089 |
0.8288 | 2.2028 | 3400 | 0.8077 | 0.5046 |
0.7845 | 2.2676 | 3500 | 0.8064 | 0.5050 |
0.8118 | 2.3324 | 3600 | 0.8087 | 0.5042 |
0.8614 | 2.3971 | 3700 | 0.8106 | 0.5096 |
0.7641 | 2.4619 | 3800 | 0.8039 | 0.5147 |
0.8106 | 2.5267 | 3900 | 0.8041 | 0.5039 |
0.7398 | 2.5915 | 4000 | 0.8017 | 0.5039 |
0.785 | 2.6563 | 4100 | 0.8051 | 0.5027 |
0.7961 | 2.7211 | 4200 | 0.8065 | 0.5058 |
0.8137 | 2.7859 | 4300 | 0.8014 | 0.5120 |
0.8272 | 2.8507 | 4400 | 0.8029 | 0.5077 |
0.731 | 2.9155 | 4500 | 0.8050 | 0.5104 |
0.8039 | 2.9802 | 4600 | 0.8053 | 0.5 |
0.7901 | 3.0450 | 4700 | 0.8052 | 0.5127 |
0.8014 | 3.1098 | 4800 | 0.8078 | 0.5039 |
0.7765 | 3.1746 | 4900 | 0.8064 | 0.5147 |
0.8032 | 3.2394 | 5000 | 0.8009 | 0.5116 |
0.7788 | 3.3042 | 5100 | 0.8026 | 0.5104 |
0.8126 | 3.3690 | 5200 | 0.8024 | 0.5104 |
0.7227 | 3.4338 | 5300 | 0.8068 | 0.5135 |
0.7436 | 3.4985 | 5400 | 0.8029 | 0.5008 |
0.8014 | 3.5633 | 5500 | 0.8117 | 0.5085 |
0.7955 | 3.6281 | 5600 | 0.8068 | 0.5031 |
0.8188 | 3.6929 | 5700 | 0.8049 | 0.5031 |
0.7762 | 3.7577 | 5800 | 0.7989 | 0.5100 |
0.8083 | 3.8225 | 5900 | 0.8024 | 0.5093 |
0.8008 | 3.8873 | 6000 | 0.8065 | 0.5050 |
0.8042 | 3.9521 | 6100 | 0.8050 | 0.5042 |
0.8508 | 4.0168 | 6200 | 0.8051 | 0.5004 |
0.7787 | 4.0816 | 6300 | 0.8050 | 0.5123 |
0.7684 | 4.1464 | 6400 | 0.8038 | 0.5019 |
0.7776 | 4.2112 | 6500 | 0.8053 | 0.5046 |
0.7625 | 4.2760 | 6600 | 0.8083 | 0.5054 |
0.8767 | 4.3408 | 6700 | 0.8035 | 0.5019 |
0.7204 | 4.4056 | 6800 | 0.8023 | 0.5023 |
0.8116 | 4.4704 | 6900 | 0.8050 | 0.5031 |
0.8763 | 4.5351 | 7000 | 0.8035 | 0.5035 |
0.7459 | 4.5999 | 7100 | 0.8047 | 0.5073 |
0.8151 | 4.6647 | 7200 | 0.8021 | 0.5139 |
0.7483 | 4.7295 | 7300 | 0.8081 | 0.5015 |
0.7991 | 4.7943 | 7400 | 0.8021 | 0.5023 |
0.8585 | 4.8591 | 7500 | 0.8047 | 0.5081 |
0.8089 | 4.9239 | 7600 | 0.8065 | 0.5031 |
0.7345 | 4.9887 | 7700 | 0.8005 | 0.5058 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support