pyannote/segmentation-3.0
This model is a fine-tuned version of pyannote/segmentation-3.0 on the CAENNAIS dataset. It achieves the following results on the evaluation set:
- Loss: 0.8139
- Model Preparation Time: 0.0035
- Der: 0.5111
- False Alarm: 0.1728
- Missed Detection: 0.2406
- Confusion: 0.0978
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|---|
0.8517 | 1.0 | 300 | 0.8676 | 0.0035 | 0.5466 | 0.1920 | 0.2425 | 0.1121 |
0.7998 | 2.0 | 600 | 0.8499 | 0.0035 | 0.5307 | 0.1640 | 0.2628 | 0.1039 |
0.7867 | 3.0 | 900 | 0.8529 | 0.0035 | 0.5366 | 0.1602 | 0.2767 | 0.0997 |
0.7777 | 4.0 | 1200 | 0.8351 | 0.0035 | 0.5296 | 0.1912 | 0.2333 | 0.1050 |
0.7596 | 5.0 | 1500 | 0.8185 | 0.0035 | 0.5118 | 0.1817 | 0.2239 | 0.1062 |
0.7591 | 6.0 | 1800 | 0.8083 | 0.0035 | 0.5101 | 0.1655 | 0.2540 | 0.0906 |
0.7555 | 7.0 | 2100 | 0.8141 | 0.0035 | 0.5109 | 0.1711 | 0.2396 | 0.1001 |
0.7394 | 8.0 | 2400 | 0.8145 | 0.0035 | 0.5119 | 0.1726 | 0.2405 | 0.0988 |
0.7458 | 9.0 | 2700 | 0.8138 | 0.0035 | 0.5107 | 0.1721 | 0.2403 | 0.0983 |
0.705 | 10.0 | 3000 | 0.8139 | 0.0035 | 0.5111 | 0.1728 | 0.2406 | 0.0978 |
Framework versions
- Transformers 4.51.0
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 51
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support